-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
39 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,7 +5,7 @@ b'Symbolic computing with sympy'@b'Ondrej Certik'@[email protected]@t@s | |
b'Statistics with Scipy'@b'Robert Kern'@[email protected]@t@s | ||
b'Cython'@b'Dag Sverre Seljebotn'@[email protected]@t@s | ||
b'Using GPUs with PyCUDA'@b'Nicolas Pinto'@[email protected]@t@s | ||
b'Designing scientific interfaces with Traits'@b'Enthought'@U@-1.00@t@s | ||
b'Designing scientific interfaces with Traits'@b'Enthought'@M@-1.00@t@s | ||
b'Mayavi/TVTK'@b'Prabhu Ramachandran'@[email protected]@t@s | ||
b'The conference talks are held at the Beckman institute'@b'map.'@[email protected]@n@s | ||
b'Welcome'@b'Jarrod Millman & Gael Varoquaux'@[email protected]@n@s | ||
|
@@ -41,7 +41,7 @@ b'ESPResSo++: A Python-controlled, Parallel Simulation Software for Soft Matter | |
b'ESPResSo++: A Python-controlled, Parallel Simulation Software for Soft Matter Research'@b'Germany'@[email protected]@n@s | ||
b'Sympy'@b'Ondrej Certik'@[email protected]@n@s | ||
b'Sympy'@b'University of Nevada'@[email protected]@n@s | ||
b'Sympy'@b'Reno'@M@1.00@n@s | ||
b'Sympy'@b'Reno'@U@-1.00@n@s | ||
b'Python implementation of weno interpolation and reconstruction'@b'Adrian Townsend'@[email protected]@n@s | ||
b'Python implementation of weno interpolation and reconstruction'@b'University of Washington'@[email protected]@n@s | ||
b'Writing Safer NumPy Extensions in C++ with Templates and TooN'@b'Damian Eads'@[email protected]@n@s | ||
|
@@ -56,13 +56,13 @@ b'Keynote:Modeling of Materials with Python'@b'Jonathan Guyer'@[email protected]@k@s | |
b'Keynote:Modeling of Materials with Python'@b'NIST'@[email protected]@k@s | ||
b'Hermes and FEMhub Project'@b'Pavel Solin'@[email protected]@n@s | ||
b'Hermes and FEMhub Project'@b'University of Nevada'@[email protected]@n@s | ||
b'Hermes and FEMhub Project'@b'Reno'@M@1.00@n@s | ||
b'Hermes and FEMhub Project'@b'Reno'@U@-1.00@n@s | ||
b'The PyMca Application and Toolkit'@b'Armando Sole'@[email protected]@n@s | ||
b'The PyMca Application and Toolkit'@b'ESRF'@[email protected]@n@s | ||
b'The PyMca Application and Toolkit'@b'France'@F@1.00@n@s | ||
b'The PyMca Application and Toolkit'@b'France'@U@-1.00@n@s | ||
b'Implementation of automatic script recording and network control for Mayavi'@b'Prabhu Ramachandran'@[email protected]@n@s | ||
b'Implementation of automatic script recording and network control for Mayavi'@b'IIT Bombay'@[email protected]@n@s | ||
b'Implementation of automatic script recording and network control for Mayavi'@b'India'@F@1.00@n@s | ||
b'Implementation of automatic script recording and network control for Mayavi'@b'India'@U@-1.00@n@s | ||
b'Fast numerical computations with Cython'@b'Dag Sverre Seljebotn'@[email protected]@n@s | ||
b'Fast numerical computations with Cython'@b'University of Oslo'@[email protected]@n@s | ||
b'Fast numerical computations with Cython'@b'Norway'@[email protected]@n@s | ||
|
@@ -85,8 +85,8 @@ b'NumPy and SciPy Documentation in 2009 and Beyond'@b'Joe Harrington'@[email protected]@n@s | |
b'NumPy and SciPy Documentation in 2009 and Beyond'@b'U. Central Florida'@[email protected]@n@s | ||
b'Python in science and engineering education in India'@b'Prabhu Ramachandran'@[email protected]@n@s | ||
b'Python in science and engineering education in India'@b'IIT Bombay'@[email protected]@n@s | ||
b'Python in science and engineering education in India'@b'India'@F@1.00@n@s | ||
b'Python in science and engineering education in India'@b'India'@U@-1.00@n@s | ||
b'Next challenges for Python in Science'@b'Jarrod Millman'@[email protected]@n@s | ||
b'Sprints'@b'Rooms Powell Booth 100 and Powell Booth 120 -map'@[email protected]@n@s | ||
b'Sprints'@b'Rooms Powell Booth 100 and Powell Booth 120 -map'@[email protected]@n@s | ||
##2009 51 3 48 40 Pexpect: 0.240000 Nexpect: 13 Pobs: 0.000120 Pover: 0.454785 | ||
##2009 47 0 47 44 Pexpect: 0.240000 Nexpect: 12 Pobs: 0.000000 Pover: 0.458287 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -23,23 +23,23 @@ b'IPython-powered Slideshow Reveal-ed'@b'Damian Avila'@[email protected]@n@s | |
b'A Gentle Introduction To Machine Learning'@b'Kyle Kastner'@[email protected]@n@s | ||
b'PyOP2: a Framework for Performance-Portable Unstructured Mesh-based Simulations and its Application to Finite-Element Computations'@b'Florian, Imperial College London, UK Rathgeber'@[email protected]@n@s | ||
b'PyOP2: a Framework for Performance-Portable Unstructured Mesh-based Simulations and its Application to Finite-Element Computations'@b'Markall'@[email protected]@n@s | ||
b'PyOP2: a Framework for Performance-Portable Unstructured Mesh-based Simulations and its Application to Finite-Element Computations'@b'Mi'@F@1.00@n@s | ||
b'PyOP2: a Framework for Performance-Portable Unstructured Mesh-based Simulations and its Application to Finite-Element Computations'@b'Mi'@M@-1.00@n@s | ||
b'Writing Reproducible Papers with Dexy'@b'Ana Nelson'@[email protected]@n@s | ||
b'Hyperopt: A Python library for optimizing the hyperparameters of machine learning algorithms'@b'James Bergstra'@[email protected]@n@s | ||
b'Hyperopt: A Python library for optimizing the hyperparameters of machine learning algorithms'@b'Dan Yamins'@[email protected]@n@s | ||
b'Hyperopt: A Python library for optimizing the hyperparameters of machine learning algorithms'@b'Cox, David D., Harvard University'@U@-1.00@n@s | ||
b'Hyperopt: A Python library for optimizing the hyperparameters of machine learning algorithms'@b'Cox, David D., Harvard University'@M@-1.00@n@s | ||
b'Julia and Python: a dynamic duo for scientific computing'@b'Jeff Bezanson'@[email protected]@n@s | ||
b'Julia and Python: a dynamic duo for scientific computing'@b'Stefan Karpinski'@[email protected]@n@s | ||
b'GraphTerm: A notebook-like graphical terminal interface for collaboration and inline data visualization'@b'Ramalingam Saravanan'@[email protected]@n@s | ||
b'Using Python for Structured Prediction'@b'Rob Zinkov'@[email protected]@n@s | ||
b'Pythran: Enabling Static Optimization of Scientific Python Programs'@b'Serge Guelton'@[email protected]@n@s | ||
b'Pythran: Enabling Static Optimization of Scientific Python Programs'@b'Pierrick Brunet'@U@-1.00@n@s | ||
b'Pythran: Enabling Static Optimization of Scientific Python Programs'@b'Pierrick Brunet'@M@-1.00@n@s | ||
b'Pythran: Enabling Static Optimization of Scientific Python Programs'@b'Alan Raynaud'@[email protected]@n@s | ||
b'Pythran: Enabling Static Optimization of Scientific Python Programs'@b'Adrien Merlini'@[email protected]@n@s | ||
b'Pythran: Enabling Static Optimization of Scientific Python Programs'@b'Mehdi Amini'@[email protected]@n@s | ||
b'The advantages of a scientific IDE'@b'Carlos Cordoba'@[email protected]@n@s | ||
b'Processing biggish data on commodity hardware: simple Python patterns'@b'Gael Varoquaux Institution: INRIA'@[email protected]@n@s | ||
b'XDress - Type, But Verify'@b'Anthony, The University of Chicago & NumFOCUS, Inc. Scopatz'@U@-1.00@n@s | ||
b'XDress - Type, But Verify'@b'Anthony, The University of Chicago & NumFOCUS, Inc. Scopatz'@M@-1.00@n@s | ||
b'An efficient workflow for reproducible science'@b'Trevor Bekolay'@[email protected]@n@s | ||
b'Python Tools for Coding and Feature Learning'@b'Leif Johnson'@[email protected]@n@s | ||
b'Keynote: Trends in Machine Learning and the SciPy community'@b'Olivier Grisel'@[email protected]@k@s | ||
|
@@ -48,28 +48,28 @@ b'Complex Experiment Configuration, Control, Automation, and Analysis using Robo | |
b'Complex Experiment Configuration, Control, Automation, and Analysis using Robot Operating System (ROS)'@b'Andrew Straw'@[email protected]@n@s | ||
b'mystic: a framework for predictive science'@b'Michael McKerns @ California Institute of Technology'@[email protected]@n@s | ||
b'Modeling the Earth with Fatiando a Terra'@b'Leonardo Uieda'@[email protected]@n@s | ||
b'Modeling the Earth with Fatiando a Terra'@b'Oliveira Jr'@U@-1.00@n@s | ||
b'Modeling the Earth with Fatiando a Terra'@b'Barbosa'@U@-1.00@n@s | ||
b'Modeling the Earth with Fatiando a Terra'@b'Oliveira Jr'@M@-1.00@n@s | ||
b'Modeling the Earth with Fatiando a Terra'@b'Barbosa'@F@-1.00@n@s | ||
b'vIPer, a new tool to work with IPython notebooks'@b'Damian Avila'@[email protected]@n@s | ||
b'Skdata: Data seets and algorithm evaluation protocols in Python'@b'Nicolas Pinto'@[email protected]@n@s | ||
b'Skdata: Data seets and algorithm evaluation protocols in Python'@b'Cox, David D., Harvard University'@U@-1.00@n@s | ||
b'Skdata: Data seets and algorithm evaluation protocols in Python'@b'Cox, David D., Harvard University'@M@-1.00@n@s | ||
b'Scientific Computing and the Materials Genome Initiative'@b'Andrew Reid'@[email protected]@n@s | ||
b'OS deduplication with SIDUS (single-instance distributing universal system)'@b'Emmanuel, Centre Blaise Pascal (Lyon, France) Quemener'@U@-1.00@n@s | ||
b'OS deduplication with SIDUS (single-instance distributing universal system)'@b'Emmanuel, Centre Blaise Pascal (Lyon, France) Quemener'@M@-1.00@n@s | ||
b'OS deduplication with SIDUS (single-instance distributing universal system)'@b'Marianne Corvellec'@[email protected]@n@s | ||
b'Infer.py: Probabilistic Programming and Bayesian Inference from Python'@b'Rob Zinkov'@[email protected]@n@s | ||
b'Multidimensional Data Exploration with Glue'@b'Christopher Beaumont'@[email protected]@n@s | ||
b'Multidimensional Data Exploration with Glue'@b'Thomas Robitaille'@[email protected]@n@s | ||
b'Multidimensional Data Exploration with Glue'@b'Michelle Borkin'@[email protected]@n@s | ||
b'Multidimensional Data Exploration with Glue'@b'Goodman'@U@-1.00@n@s | ||
b'lpEdit: An editor to facilitate reproducible analysis via literate programming'@b'Adam, Duke University, CNRS France Richards'@U@-1.00@n@s | ||
b'lpEdit: An editor to facilitate reproducible analysis via literate programming'@b'Kosinski Andrzej'@U@-1.00@n@s | ||
b'Multidimensional Data Exploration with Glue'@b'Goodman'@F@-1.00@n@s | ||
b'lpEdit: An editor to facilitate reproducible analysis via literate programming'@b'Adam, Duke University, CNRS France Richards'@M@-1.00@n@s | ||
b'lpEdit: An editor to facilitate reproducible analysis via literate programming'@b'Kosinski Andrzej'@M@-1.00@n@s | ||
b'lpEdit: An editor to facilitate reproducible analysis via literate programming'@b'Camille Bonneaud'@[email protected]@n@s | ||
b'Roadmap to a Sentience Stack'@b'Eric Neuman'@[email protected]@n@s | ||
b'Exploring disease genetics from thousands of individual genomes with Gemini'@b'Aaron Quinlan'@[email protected]@n@s | ||
b'Exploring disease genetics from thousands of individual genomes with Gemini'@b'Uma Paila'@[email protected]@n@s | ||
b'Exploring disease genetics from thousands of individual genomes with Gemini'@b'Brad Chapman'@[email protected]@n@s | ||
b'Exploring disease genetics from thousands of individual genomes with Gemini'@b'Rory Kirchner'@[email protected]@n@s | ||
b'metaseq: a Python framework for integrating high-throughput sequencing analyses'@b'Ryan, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Dale'@U@-1.00@n@s | ||
b'metaseq: a Python framework for integrating high-throughput sequencing analyses'@b'Ryan, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Dale'@M@-1.00@n@s | ||
b'Stuff to do with your genomic intervals'@b'Brent Pedersen'@[email protected]@n@s | ||
b'Stuff to do with your genomic intervals'@b'University of Colorado'@[email protected]@n@s | ||
b'All-by-all learning of protein complexes from mass spectrometry data'@b'Blake Borgeson'@[email protected]@n@s | ||
|
@@ -164,4 +164,4 @@ b'Diving into NumPy code'@b'David Cournapeau'@[email protected]@t@s | |
b'Statistical Data Analysis in Python'@b'Christopher Fonnesbeck'@[email protected]@t@s | ||
b'Using geospatial data with python'@b'Kelsey Jordahl'@[email protected]@t@s | ||
b'An Introduction to scikit-learn (II)'@b'Ga\xc3\x83\xc2\xabl Varoquaux'@[email protected]@t@s | ||
##2013 131 12 119 35 Pexpect: 0.240000 Nexpect: 32 Pobs: 0.000003 Pover: 0.488004 | ||
##2013 142 13 129 24 Pexpect: 0.240000 Nexpect: 35 Pobs: 0.000001 Pover: 0.460394 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters