This repository contains a collection of containerized (dockerized) time series anomaly detection methods that can easily be evaluated using TimeEval. Some of the algorithm's source code is access restricted and we just provide the TimeEval stubs and manifests. We are happy to share our TimeEval adaptations of excluded algorithms upon request, if the original authors approve this.
Each folder contains the implementation of an algorithm that will be build into a runnable Docker container using CI.
The namespace prefix (repository) for the built Docker images is registry.gitlab.hpi.de/akita/i/
.
Algorithm (folder) | Image | Language | Base image | Learning Type | Input Dimensionality |
---|---|---|---|---|---|
arima (restricted access) | registry.gitlab.hpi.de/akita/i/arima |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
autoencoder | registry.gitlab.hpi.de/akita/i/autoencoder |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
bagel | registry.gitlab.hpi.de/akita/i/bagel |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | univariate |
baseline_increasing | registry.gitlab.hpi.de/akita/i/baseline_increasing |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
baseline_normal | registry.gitlab.hpi.de/akita/i/baseline_normal |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
baseline_random | registry.gitlab.hpi.de/akita/i/baseline_random |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
cblof | registry.gitlab.hpi.de/akita/i/cblof |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
cof | registry.gitlab.hpi.de/akita/i/cof |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
copod | registry.gitlab.hpi.de/akita/i/copod |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
dae (DeNoising Autoencoder) | registry.gitlab.hpi.de/akita/i/dae |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
damp | registry.gitlab.hpi.de/akita/i/damp |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
dbstream | registry.gitlab.hpi.de/akita/i/dbstream |
R 4.0.5 | registry.gitlab.hpi.de/akita/i/r4-base |
unsupervised | multivariate |
deepant | registry.gitlab.hpi.de/akita/i/deepant |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
deepnap | registry.gitlab.hpi.de/akita/i/deepnap |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
donut | registry.gitlab.hpi.de/akita/i/donut |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | univariate |
dspot | registry.gitlab.hpi.de/akita/i/dspot |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
dwt_mlead | registry.gitlab.hpi.de/akita/i/dwt_mlead |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
eif | registry.gitlab.hpi.de/akita/i/eif |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
encdec_ad | registry.gitlab.hpi.de/akita/i/encdec_ad |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
ensemble_gi | registry.gitlab.hpi.de/akita/i/ensemble_gi |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
fast_mcd | registry.gitlab.hpi.de/akita/i/fast_mcd |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
fft | registry.gitlab.hpi.de/akita/i/fft |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
generic_rf | registry.gitlab.hpi.de/akita/i/generic_rf |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | univariate |
generic_xgb | registry.gitlab.hpi.de/akita/i/generic_xgb |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | univariate |
grammarviz3 | registry.gitlab.hpi.de/akita/i/grammarviz3 |
Java | registry.gitlab.hpi.de/akita/i/java-base |
unsupervised | univariate |
grammarviz3_multi | registry.gitlab.hpi.de/akita/i/grammarviz3_multi |
Java | registry.gitlab.hpi.de/akita/i/java-base |
unsupervised | multivariate |
hbos | registry.gitlab.hpi.de/akita/i/hbos |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
health_esn | registry.gitlab.hpi.de/akita/i/health_esn |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
hif | registry.gitlab.hpi.de/akita/i/hif |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
supervised | multivariate |
hotsax | registry.gitlab.hpi.de/akita/i/hotsax |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
hybrid_knn | registry.gitlab.hpi.de/akita/i/hybrid_knn |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
if_lof | registry.gitlab.hpi.de/akita/i/if_lof |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
iforest | registry.gitlab.hpi.de/akita/i/iforest |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
img_embedding_cae | registry.gitlab.hpi.de/akita/i/img_embedding_cae |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | univariate |
kmeans | registry.gitlab.hpi.de/akita/i/kmeans |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
knn | registry.gitlab.hpi.de/akita/i/knn |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
laser_dbn | registry.gitlab.hpi.de/akita/i/laser_dbn |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
left_stampi | registry.gitlab.hpi.de/akita/i/left_stampi |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
lof | registry.gitlab.hpi.de/akita/i/lof |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
lstm_ad | registry.gitlab.hpi.de/akita/i/lstm_ad |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
lstm_vae | registry.gitlab.hpi.de/akita/i/lstm_vae |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | univariate |
median_method | registry.gitlab.hpi.de/akita/i/median_method |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
mscred | registry.gitlab.hpi.de/akita/i/mscred |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
mstamp | registry.gitlab.hpi.de/akita/i/mstamp |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
mtad_gat | registry.gitlab.hpi.de/akita/i/mtad_gat |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
multi_hmm | registry.gitlab.hpi.de/akita/i/multi_hmm |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
supervised | multivariate |
multi_subsequence_lof | registry.gitlab.hpi.de/akita/i/multi_subsequence_lof |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
mvalmod | registry.gitlab.hpi.de/akita/i/mvalmod |
R 3.5.2 | registry.gitlab.hpi.de/akita/i/tsmp -> registry.gitlab.hpi.de/akita/i/r-base |
unsupervised | multivariate |
norma (restricted access) | registry.gitlab.hpi.de/akita/i/norma |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
normalizing_flows | registry.gitlab.hpi.de/akita/i/normalizing_flows |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
supervised | multivariate |
novelty_svr | registry.gitlab.hpi.de/akita/i/novelty_svr |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
numenta_htm | registry.gitlab.hpi.de/akita/i/numenta_htm |
Python 2.7 | registry.gitlab.hpi.de/akita/i/python2-base |
unsupervised | univariate |
ocean_wnn | registry.gitlab.hpi.de/akita/i/ocean_wnn |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | univariate |
omnianomaly | registry.gitlab.hpi.de/akita/i/omnianomaly |
Python 3.6 | registry.gitlab.hpi.de/akita/i/python36-base |
semi-supervised | multivariate |
pcc | registry.gitlab.hpi.de/akita/i/pcc |
Python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
pci | registry.gitlab.hpi.de/akita/i/pci |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
phasespace_svm | registry.gitlab.hpi.de/akita/i/phasespace_svm |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
pst | registry.gitlab.hpi.de/akita/i/pst |
R 3.5.2 | registry.gitlab.hpi.de/akita/i/r-base |
||
random_black_forest | registry.gitlab.hpi.de/akita/i/random_black_forest |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
robust_pca | registry.gitlab.hpi.de/akita/i/robust_pca |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
sand (restricted access) | registry.gitlab.hpi.de/akita/i/sand |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
sarima | registry.gitlab.hpi.de/akita/i/sarima |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
series2graph (restricted access) | registry.gitlab.hpi.de/akita/i/series2graph |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
s_h_esd | registry.gitlab.hpi.de/akita/i/s_h_esd |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
sr | registry.gitlab.hpi.de/akita/i/sr |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
sr_cnn | registry.gitlab.hpi.de/akita/i/sr_cnn |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch |
semi-supervised | univariate |
ssa (restricted access) | registry.gitlab.hpi.de/akita/i/ssa |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | univariate |
stamp | registry.gitlab.hpi.de/akita/i/stamp |
R 3.5.2 | registry.gitlab.hpi.de/akita/i/tsmp -> registry.gitlab.hpi.de/akita/i/r-base |
unsupervised | univariate |
stomp | registry.gitlab.hpi.de/akita/i/stomp |
R 3.5.2 | registry.gitlab.hpi.de/akita/i/tsmp -> registry.gitlab.hpi.de/akita/i/r-base |
unsupervised | univariate |
subsequence_fast_mcd | registry.gitlab.hpi.de/akita/i/subsequence_fast_mcd |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | univariate |
subsequence_knn | registry.gitlab.hpi.de/akita/i/subsequence_knn |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
subsequence_if | registry.gitlab.hpi.de/akita/i/subsequence_if |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
subsequence_lof | registry.gitlab.hpi.de/akita/i/subsequence_lof |
python 3.7 | registry.gitlab.hpi.de/akita/i/pyod -> registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
tanogan | registry.gitlab.hpi.de/akita/i/tanogan |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch -> registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
tarzan | registry.gitlab.hpi.de/akita/i/tarzan |
Python 3.7 | registry.gitlab.hpi.de/akita/i/python3-torch |
semi-supervised | univariate |
telemanom | registry.gitlab.hpi.de/akita/i/telemanom |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
semi-supervised | multivariate |
torsk | registry.gitlab.hpi.de/akita/i/torsk |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | multivariate |
triple_es | registry.gitlab.hpi.de/akita/i/triple_es |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
ts_bitmap | registry.gitlab.hpi.de/akita/i/ts_bitmap |
python 3.7 | registry.gitlab.hpi.de/akita/i/python3-base |
unsupervised | univariate |
valmod | registry.gitlab.hpi.de/akita/i/valmod |
R 3.5.2 | registry.gitlab.hpi.de/akita/i/tsmp -> registry.gitlab.hpi.de/akita/i/r-base |
unsupervised | univariate |
You need the following tools installed on your development machine:
- git
- docker
- access to this repository
Please make yourself familiar with the concepts of TimeEval, and read the TimeEval documentation and this document carefully!
Testing an algorithm locally can be done in two different ways:
- Test the algorithm's code directly (using the tools provided by the programming language)
- Test the algorithm within its docker container
The first option is specific to the programming language, so we won't cover it here.
Each algorithm in this repository will be bundled in a self-contained Docker image so that it can be executed with a single command and no additional dependencies must be installed. This allows you to test the algorithm without installing its dependencies on your machine. The only requirement is a (x86-)Docker runtime. Follow the below steps to test your algorithm using Docker (examples assume that you want to build the image for the LOF algorithm):
-
Prepare base image You'll need the required base Docker image to build your algorithm's image. If you find yourself situated in the HPI network (either VPN or physically), you are able to pull the docker images from our docker repository
registry.gitlab.hpi.de/akita/i/
. If this is not the case you have to build the base images yourself as follows:- change to the
0-base-images
folder:
cd 0-base-images
- build your desired base image:
docker build -t registry.gitlab.hpi.de/akita/i/python3-base:0.2.5 ./python3-base
-
(optional step) because
lof
depends on a derived base image, we need to additionally build thepyod
-image- re-tag the base image
python3-base
withlatest
(because thepyod
-image depends on the latestpython3-base
-image):
docker tag registry.gitlab.hpi.de/akita/i/python3-base:latest registry.gitlab.hpi.de/akita/i/python3-base:0.2.5
- build derived base image:
docker build -t registry.gitlab.hpi.de/akita/i/pyod:0.2.5 ./pyod
- re-tag the base image
-
now you can build your algorithm image from the base image (next item)
- change to the
-
Build algorithm image Next, you'll need to build the algorithm's Docker image. It is based on the previously built base image and contains the algorithm-specific source code.
- change to the root directory of the
timeeval-algorithms
-repository - build the algorithm image
cd .. docker build -t registry.gitlab.hpi.de/akita/i/lof ./lof
- change to the root directory of the
-
Train your algorithm (optional) If your algorithm is supervised or semi-supervised, execute the following command to perform the training step (not necessary for LOF):
mkdir -p 2-results docker run --rm \ -v $(pwd)/1-data:/data:ro \ -v $(pwd)/2-results:/results:rw \ # -e LOCAL_UID=<current user id> \ # -e LOCAL_GID=<current groupid> \ registry.gitlab.hpi.de/akita/i/<your_algorithm>:latest execute-algorithm '{ \ "executionType": "train", \ "dataInput": "/data/dataset.csv", \ "dataOutput": "/results/anomaly_scores.ts", \ "modelInput": "/results/model.pkl", \ "modelOutput": "/results/model.pkl", \ "customParameters": {} \ }'
Be warned that the result and model files will be written to the
2-results
-directory as the root-user if you do not pass the optional environment variablesLOCAL_UID
andLOCAL_GID
to the container. -
Execute your algorithm Run the following command to perform the execution step of your algorithm:
mkdir -p 2-results TIMEEVAL_ALGORITHM=lof docker run --rm \ -v $(pwd)/1-data:/data:ro \ -v $(pwd)/2-results:/results:rw \ # -e LOCAL_UID=<current user id> \ # -e LOCAL_GID=<current groupid> \ registry.gitlab.hpi.de/akita/i/${TIMEEVAL_ALGORITHM}:latest execute-algorithm '{ \ "executionType": "execute", \ "dataInput": "/data/dataset.csv", \ "dataOutput": "/results/anomaly_scores.ts", \ "modelInput": "/results/model.pkl", \ "modelOutput": "/results/model.pkl", \ "customParameters": {} \ }'
Be warned that the result and model files will be written to the
2-results
-directory as the root-user if you do not pass the optional environment variablesLOCAL_UID
andLOCAL_GID
to the container.