-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
40,853 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,308 @@ | ||
import tinytorch as tt | ||
from dataclasses import dataclass | ||
from typing import Any | ||
import numpy as np | ||
import random | ||
|
||
# np.random.seed(0) | ||
# curl -LO https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt | ||
|
||
@dataclass | ||
class ModelArgs: | ||
seq_len: int = 10 | ||
d_model: int = 16 | ||
n_heads: int = 2 | ||
vocab_size: int = 10 | ||
num_layers: int = 2 | ||
esp: int =1e-5 | ||
|
||
|
||
def silu(x) -> tt.Tensor: | ||
return x * tt.sigmoid(x) | ||
|
||
|
||
class RMSNorm(tt.Module): | ||
def __init__(self, dim: int, eps: float = 1e-5): | ||
super().__init__() | ||
self.eps = eps | ||
self.weight = tt.Parameter(tt.ones((dim))) | ||
|
||
def _norm(self, x:tt.Tensor): | ||
rms = ((x**2).mean(axis=-1, keepdim=True) + self.eps) ** 0.5 | ||
return x /rms | ||
|
||
def forward(self, x): | ||
import time | ||
# return x | ||
start:int = time.perf_counter() | ||
output = self._norm(x) | ||
# output = x | ||
return output * self.weight | ||
|
||
|
||
class Embedding(tt.Module): | ||
def __init__(self, num_embeddings: int, embedding_dim: int): | ||
self.num_embeddings = num_embeddings | ||
self.embedding_dim = embedding_dim | ||
# print(f"{self.num_embeddings=} {self.embedding_dim=}") | ||
|
||
self.weight = tt.Parameter(tt.rand((num_embeddings, embedding_dim))) | ||
|
||
def forward(self, x: tt.Tensor): | ||
# print(self.weight.data.sum()) | ||
|
||
shape = x.shape | ||
x = x.reshape(-1, 1) | ||
tensors = [] | ||
for idx, scaler in enumerate(x): | ||
# print(f"{self.num_embeddings} {scaler.item()=}") | ||
tensor = self.weight[scaler.item()] | ||
tensors.append(tensor) | ||
tensor = tt.stack(tensors) | ||
return tensor.reshape(*shape, self.embedding_dim) | ||
|
||
|
||
class MLP(tt.Module): | ||
def __init__( | ||
self, in_features: int, out_features: int, bias: bool = True, expansion: int = 4 | ||
) -> None: | ||
super().__init__() | ||
self.w1 = tt.Linear(in_features, in_features * expansion) | ||
self.w2 = tt.Linear(in_features, in_features * expansion) | ||
self.w3 = tt.Linear(in_features * expansion, out_features) | ||
|
||
def forward(self, x): | ||
return self.w3(silu(self.w1(x)) * self.w2(x)) | ||
|
||
|
||
class MHA(tt.Module): | ||
def __init__(self, model_args: ModelArgs) -> None: | ||
super().__init__() | ||
self.key = tt.Linear(model_args.d_model, model_args.d_model) | ||
self.query = tt.Linear(model_args.d_model, model_args.d_model) | ||
self.value = tt.Linear(model_args.d_model, model_args.d_model) | ||
self.proj = tt.Linear(model_args.d_model, model_args.d_model) | ||
|
||
self.n_heads = model_args.n_heads | ||
|
||
def forward(self, x: tt.Tensor, mask=None): | ||
B, T, C = x.shape | ||
k = self.key(x) | ||
q = self.query(x) | ||
v = self.value(x) | ||
|
||
k: tt.Tensor = k.reshape(B, T, self.n_heads, C // self.n_heads).transpose(1, 2) | ||
q = q.reshape(B, T, self.n_heads, C // self.n_heads).transpose(1, 2) | ||
v = v.reshape(B, T, self.n_heads, C // self.n_heads).transpose(1, 2) | ||
wei = q @ k.transpose(-1, -2) | ||
if mask is not None: | ||
wei = mask[ :, :T, :T] * wei | ||
v = wei @ v | ||
v = v.reshape(B, T, C) | ||
x = self.proj(v) | ||
return x | ||
|
||
|
||
class Block(tt.Module): | ||
def __init__(self, model_args: ModelArgs) -> None: | ||
super().__init__() | ||
self.attn = MHA(model_args) | ||
self.ffn = MLP(model_args.d_model, model_args.d_model) | ||
self.l1 = RMSNorm(model_args.d_model, eps=model_args.esp) | ||
self.l2 = RMSNorm(model_args.d_model, eps=model_args.esp) | ||
self.mask = tt.tensor( | ||
np.tril(np.ones((model_args.n_heads, model_args.seq_len, model_args.seq_len))) | ||
) | ||
|
||
def forward(self, x): | ||
x = x + self.attn(self.l1(x), self.mask) | ||
x = x + self.ffn(self.l1(x)) | ||
return x | ||
|
||
|
||
class GPT(tt.Module): | ||
def __init__(self, model_args: ModelArgs) -> None: | ||
self.tok_embeddings = Embedding(model_args.vocab_size, model_args.d_model) | ||
self.pos_embeddings = Embedding(model_args.seq_len, model_args.d_model) | ||
|
||
self.blocks = tt.ModuleList( | ||
[Block(model_args) for _ in range(model_args.num_layers)] | ||
) | ||
|
||
self.norm = RMSNorm(model_args.d_model,model_args.esp) | ||
self.proj = tt.Linear(model_args.d_model,model_args.vocab_size) | ||
|
||
def forward(self, x: tt.Tensor): | ||
tokens = self.tok_embeddings(x) | ||
pos = self.pos_embeddings(tt.arange(x.shape[1])) | ||
x = tokens + pos | ||
# print(f"{x=}") | ||
|
||
for block in self.blocks: | ||
x = block(x) | ||
# print(f"{x=}") | ||
|
||
x = self.norm(x) | ||
# print(f"{x=}") | ||
logits = self.proj(x) | ||
return logits | ||
|
||
def model_size(model): | ||
num_params = sum([p.size for p in model.parameters()]) | ||
if num_params >= 1e9: | ||
return f"{num_params / 1e9:.2f}B" | ||
elif num_params >= 1e6: | ||
return f"{num_params / 1e6:.2f}M" | ||
elif num_params >= 1e3: | ||
return f"{num_params / 1e3:.2f}K" | ||
else: | ||
return str(num_params) | ||
|
||
class Tokenizer: | ||
def __init__(self, text_file): | ||
with open(text_file, 'r', encoding='utf-8') as f: | ||
self.text = f.read() | ||
|
||
self.chars = sorted(list(set(self.text))) | ||
self.vocab_size = len(self.chars) | ||
|
||
self.stoi = {ch: i for i, ch in enumerate(self.chars)} | ||
self.itos = {i: ch for i, ch in enumerate(self.chars)} | ||
|
||
def encode(self, s): | ||
return [self.stoi[c] for c in s] | ||
|
||
def decode(self, l): | ||
return ''.join([self.itos[i] for i in l]) | ||
|
||
def train_val_split(self, ratio=0.9): | ||
data = self.encode(self.text) | ||
n = int(ratio * len(data)) | ||
train_data = data[:n] | ||
val_data = data[n:] | ||
print(f"{len(data)=}") | ||
return train_data, val_data | ||
|
||
|
||
|
||
class TextDataset: | ||
def __init__(self, data, batch_size, seq_len): | ||
self.data = data | ||
self.batch_size = batch_size | ||
self.seq_len = seq_len | ||
self.data_len = len(self.data) | ||
print(self.data_len) | ||
|
||
def __len__(self): | ||
return (self.data_len - self.seq_len) // self.batch_size | ||
|
||
def __iter__(self): | ||
# Shuffle indices for random sampling | ||
indices = list(range(0, self.data_len - self.seq_len)) | ||
random.shuffle(indices) | ||
|
||
for i in range(0, len(indices)): | ||
batch_indices = indices[i:i+self.batch_size] | ||
|
||
x_batch = [self.data[idx:idx+self.seq_len] for idx in batch_indices] | ||
y_batch = [self.data[idx+1:idx+self.seq_len+1] for idx in batch_indices] | ||
|
||
yield tt.tensor(x_batch), tt.tensor(y_batch) | ||
|
||
|
||
def generate(tokenizer:Tokenizer,model:GPT,x=None,ouput_len=100): | ||
|
||
if x is None: | ||
x = tt.tensor([[[1]]]) | ||
for _ in range(ouput_len): | ||
char = tokenizer.decode([x.data[0][-1].sum()]) | ||
# print(char, end='', flush=True) | ||
# print(f"{x.shape=}") | ||
pred = model.forward(x.reshape(-1,1)) | ||
o = tt.tensor([[[np.argmax(pred[0][-1].data)]]]) | ||
# print(f"I: {x.shape=} {o.shape=}") | ||
s = [[i.sum() for i in x.data[0]]+[i.sum() for i in o.data[0]]] | ||
print(tokenizer.decode(s[0])[-1],end='', flush=True) | ||
x = tt.tensor(s) | ||
|
||
|
||
|
||
def train(model, optimizer:tt.Optimizer, dataset: TextDataset, num_iterations): | ||
iteration = 0 | ||
for data,target in dataset: | ||
|
||
B, T = data.shape | ||
|
||
# Forward pass | ||
logits:tt.Tensor = model(data) | ||
|
||
# print(f"{data.shape=}") | ||
|
||
# Reshape logits and targets for loss computation | ||
logits = logits.reshape(B * T, -1) | ||
target = target.reshape(B * T) | ||
|
||
|
||
# Compute loss | ||
loss = tt.cross_entropy(logits, target) | ||
|
||
# print(f"{logits.shape=} {target.shape=} {loss.shape=}") | ||
|
||
# Zero gradients, backward pass, optimizer step | ||
loss.backward() | ||
optimizer.step() | ||
optimizer.zero_grad() | ||
|
||
print(f"Iteration [{iteration + 1}/{num_iterations}], Loss: {loss.item()}") | ||
|
||
if iteration%10==0: | ||
generate(tokenizer,model) | ||
iteration += 1 | ||
if iteration >= num_iterations: | ||
print("DONE...") | ||
break | ||
|
||
print("Training complete.") | ||
|
||
|
||
|
||
|
||
# Define some hyperparameters | ||
learning_rate = 3e-3 | ||
batch_size = 8 | ||
seq_len = 10 | ||
d_model = 32 | ||
n_heads = 2 | ||
num_layers = 2 | ||
# Example Usage | ||
tokenizer = Tokenizer('input.txt') | ||
train_data, val_data = tokenizer.train_val_split() | ||
|
||
batch_size = 8 | ||
seq_len = 10 | ||
|
||
train_dataset = TextDataset(train_data, batch_size, seq_len) | ||
val_dataset = TextDataset(val_data, batch_size, seq_len) | ||
|
||
model_args = ModelArgs( | ||
d_model=d_model, seq_len=seq_len, vocab_size=tokenizer.vocab_size, n_heads=n_heads | ||
) | ||
# Initialize model and optimizer | ||
model = GPT(model_args) | ||
# print(model.state_dict()) | ||
print(f"Model: { model_size(model)}") | ||
optimizer = tt.Adam(model.parameters(), lr=learning_rate) | ||
|
||
# Call the train function to initiate training | ||
train(model, optimizer, train_dataset, num_iterations=100_000) # Replace 1000 with the actual number of iterations you want | ||
|
||
generate(tokenizer,model) | ||
|
||
# Tokenizer Class | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
Oops, something went wrong.