Skip to content

Commit

Permalink
[Feature] Support QueryInst (open-mmlab#6050)
Browse files Browse the repository at this point in the history
* impl queryinst

* bug free queryinst with crop and negative samples

* use detr hyperparameters

* pre-commit hooks

* modified dynamic_mask_head docstrings

* remove unused dropout in dynamic_mask_head

* add docstring for dice_loss

* add dice_loss unit test

* impl unit test for dynamic_mask_head

* update queryinst docstring and implementation

* stability update for dice_loss and dynamic_mask_head

* update for clarify

* bug free in case of num_proposals equal to zero

* detail docstrings

* fixed CI issues

* issues resolved

* add queryinst docs
  • Loading branch information
vealocia authored Oct 26, 2021
1 parent d145b0e commit f003656
Show file tree
Hide file tree
Showing 23 changed files with 724 additions and 42 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -147,6 +147,7 @@ Results and models are available in the [model zoo](docs/model_zoo.md).
- [x] [CenterNet (CVPR'2019)](configs/centernet/README.md)
- [x] [YOLOX (ArXiv'2021)](configs/yolox/README.md)
- [x] [SOLO (ECCV'2020)](configs/solo/README.md)
- [x] [QueryInst (ICCV'2021)](configs/queryinst/README.md)
</details>

Some other methods are also supported in [projects using MMDetection](./docs/projects.md).
Expand Down
1 change: 1 addition & 0 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,7 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
- [x] [CenterNet (CVPR'2019)](configs/centernet/README.md)
- [x] [YOLOX (ArXiv'2021)](configs/yolox/README.md)
- [x] [SOLO (ECCV'2020)](configs/solo/README.md)
- [x] [QueryInst (ICCV'2021)](configs/queryinst/README.md)
</details>

我们在[基于 MMDetection 的项目](./docs/projects.md)中列举了一些其他的支持的算法。
Expand Down
26 changes: 26 additions & 0 deletions configs/queryinst/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Instances as Queries

## Introduction

<!-- [ALGORITHM] -->

```
@InProceedings{Fang_2021_ICCV,
author = {Fang, Yuxin and Yang, Shusheng and Wang, Xinggang and Li, Yu and Fang, Chen and Shan, Ying and Feng, Bin and Liu, Wenyu},
title = {Instances As Queries},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {6910-6919}
}
```

## Results and Models

| Model | Backbone | Style | Lr schd | Number of Proposals |Multi-Scale| RandomCrop | box AP | mask AP | Config | Download |
|:------------:|:---------:|:-------:|:-------:|:-------: |:-------: |:---------:|:------:|:------:|:------:|:--------:|
| QueryInst | R-50-FPN | pytorch | 1x | 100 | False | False | 42.0 | 37.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/queryinst/queryinst_r50_fpn_1x_coco.py) | [model]() &#124; [log]() |
| QueryInst | R-50-FPN | pytorch | 3x | 100 | True | False | 44.8 | 39.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/queryinst/queryinst_r50_fpn_mstrain_480-800_3x_coco.py) | [model]() &#124; [log]() |
| QueryInst | R-50-FPN | pytorch | 3x | 300 | True | True | 47.5 | 41.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/queryinst/queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py) | [model]() &#124; [log]() |
| QueryInst | R-101-FPN | pytorch | 3x | 100 | True | False | 46.4 | 41.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/queryinst/queryinst_r101_fpn_mstrain_480-800_3x_coco.py) | [model]() &#124; [log]() |
| QueryInst | R-101-FPN | pytorch | 3x | 300 | True | True | 49.0 | 42.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/queryinst/queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py) | [model]() &#124; [log]() |
100 changes: 100 additions & 0 deletions configs/queryinst/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
Collections:
- Name: QueryInst
Metadata:
Training Data: COCO
Training Techniques:
- AdamW
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- FPN
- ResNet
- QueryInst
Paper:
URL: https://openaccess.thecvf.com/content/ICCV2021/papers/Fang_Instances_As_Queries_ICCV_2021_paper.pdf
Title: 'Instances as Queries'
README: configs/queryinst/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/detectors/queryinst.py
Version: v2.18.0

Models:
- Name: queryinst_r50_fpn_1x_coco
In Collection: QueryInst
Config: configs/queryinst/queryinst_r50_fpn_1x_coco.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.5
Weights:

- Name: queryinst_r50_fpn_mstrain_480-800_3x_coco
In Collection: QueryInst
Config: configs/queryinst/queryinst_r50_fpn_mstrain_480-800_3x_coco.py
Metadata:
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 44.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.8
Weights:

- Name: queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco
In Collection: QueryInst
Config: configs/queryinst/queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
Metadata:
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 47.5
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 41.7
Weights:

- Name: queryinst_r101_fpn_mstrain_480-800_3x_coco
In Collection: QueryInst
Config: configs/queryinst/queryinst_r101_fpn_mstrain_480-800_3x_coco.py
Metadata:
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 46.4
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 41.0
Weights:

- Name: queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco
In Collection: QueryInst
Config: configs/queryinst/queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
Metadata:
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 49.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 42.9
Weights:
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = './queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py'

model = dict(
backbone=dict(
depth=101,
init_cfg=dict(type='Pretrained',
checkpoint='torchvision://resnet101')))
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = './queryinst_r50_fpn_mstrain_480-800_3x_coco.py'

model = dict(
backbone=dict(
depth=101,
init_cfg=dict(type='Pretrained',
checkpoint='torchvision://resnet101')))
138 changes: 138 additions & 0 deletions configs/queryinst/queryinst_r50_fpn_1x_coco.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
_base_ = [
'../_base_/datasets/coco_instance.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
num_stages = 6
num_proposals = 100
model = dict(
type='QueryInst',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=0,
add_extra_convs='on_input',
num_outs=4),
rpn_head=dict(
type='EmbeddingRPNHead',
num_proposals=num_proposals,
proposal_feature_channel=256),
roi_head=dict(
type='SparseRoIHead',
num_stages=num_stages,
stage_loss_weights=[1] * num_stages,
proposal_feature_channel=256,
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
dict(
type='DIIHead',
num_classes=80,
num_ffn_fcs=2,
num_heads=8,
num_cls_fcs=1,
num_reg_fcs=3,
feedforward_channels=2048,
in_channels=256,
dropout=0.0,
ffn_act_cfg=dict(type='ReLU', inplace=True),
dynamic_conv_cfg=dict(
type='DynamicConv',
in_channels=256,
feat_channels=64,
out_channels=256,
input_feat_shape=7,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN')),
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
loss_iou=dict(type='GIoULoss', loss_weight=2.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=2.0),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
clip_border=False,
target_means=[0., 0., 0., 0.],
target_stds=[0.5, 0.5, 1., 1.])) for _ in range(num_stages)
],
mask_head=[
dict(
type='DynamicMaskHead',
dynamic_conv_cfg=dict(
type='DynamicConv',
in_channels=256,
feat_channels=64,
out_channels=256,
input_feat_shape=14,
with_proj=False,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN')),
num_convs=4,
num_classes=80,
roi_feat_size=14,
in_channels=256,
conv_kernel_size=3,
conv_out_channels=256,
class_agnostic=False,
norm_cfg=dict(type='BN'),
upsample_cfg=dict(type='deconv', scale_factor=2),
loss_mask=dict(
type='DiceLoss',
loss_weight=8.0,
use_sigmoid=True,
activate=False,
eps=1e-5)) for _ in range(num_stages)
]),
# training and testing settings
train_cfg=dict(
rpn=None,
rcnn=[
dict(
assigner=dict(
type='HungarianAssigner',
cls_cost=dict(type='FocalLossCost', weight=2.0),
reg_cost=dict(type='BBoxL1Cost', weight=5.0),
iou_cost=dict(type='IoUCost', iou_mode='giou',
weight=2.0)),
sampler=dict(type='PseudoSampler'),
pos_weight=1,
mask_size=28,
) for _ in range(num_stages)
]),
test_cfg=dict(
rpn=None, rcnn=dict(max_per_img=num_proposals, mask_thr_binary=0.5)))

# optimizer
optimizer = dict(
_delete_=True,
type='AdamW',
lr=0.0001,
weight_decay=0.0001,
paramwise_cfg=dict(
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}))
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=0.1, norm_type=2))
# learning policy
lr_config = dict(policy='step', step=[8, 11], warmup_iters=1000)
runner = dict(type='EpochBasedRunner', max_epochs=12)
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
_base_ = './queryinst_r50_fpn_mstrain_480-800_3x_coco.py'
num_proposals = 300
model = dict(
rpn_head=dict(num_proposals=num_proposals),
test_cfg=dict(
_delete_=True,
rpn=None,
rcnn=dict(max_per_img=num_proposals, mask_thr_binary=0.5)))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

# augmentation strategy originates from DETR.
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='AutoAugment',
policies=[[
dict(
type='Resize',
img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
(736, 1333), (768, 1333), (800, 1333)],
multiscale_mode='value',
keep_ratio=True)
],
[
dict(
type='Resize',
img_scale=[(400, 1333), (500, 1333), (600, 1333)],
multiscale_mode='value',
keep_ratio=True),
dict(
type='RandomCrop',
crop_type='absolute_range',
crop_size=(384, 600),
allow_negative_crop=True),
dict(
type='Resize',
img_scale=[(480, 1333), (512, 1333), (544, 1333),
(576, 1333), (608, 1333), (640, 1333),
(672, 1333), (704, 1333), (736, 1333),
(768, 1333), (800, 1333)],
multiscale_mode='value',
override=True,
keep_ratio=True)
]]),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
data = dict(train=dict(pipeline=train_pipeline))
23 changes: 23 additions & 0 deletions configs/queryinst/queryinst_r50_fpn_mstrain_480-800_3x_coco.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
_base_ = './queryinst_r50_fpn_1x_coco.py'

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
min_values = (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(
type='Resize',
img_scale=[(1333, value) for value in min_values],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]

data = dict(train=dict(pipeline=train_pipeline))
lr_config = dict(policy='step', step=[27, 33])
runner = dict(type='EpochBasedRunner', max_epochs=36)
4 changes: 4 additions & 0 deletions docs/model_zoo.md
Original file line number Diff line number Diff line change
Expand Up @@ -238,6 +238,10 @@ Please refer to [PVT](https://github.com/open-mmlab/mmdetection/blob/master/conf

Please refer to [SOLO](https://github.com/open-mmlab/mmdetection/blob/master/configs/solo) for details.

### QueryInst

Please refer to [QueryInst](https://github.com/open-mmlab/mmdetection/blob/master/configs/queryinst) for details.

### Other datasets

We also benchmark some methods on [PASCAL VOC](https://github.com/open-mmlab/mmdetection/blob/master/configs/pascal_voc), [Cityscapes](https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes) and [WIDER FACE](https://github.com/open-mmlab/mmdetection/blob/master/configs/wider_face).
Expand Down
1 change: 1 addition & 0 deletions docs/projects.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,3 +55,4 @@ Methods already supported and maintained by MMDetection are not listed.
- Focal Transformer: Focal Self-attention for Local-Global Interactions in Vision Transformers, NeurIPS2021[[paper]](https://arxiv.org/abs/2107.00641)[[github]](https://github.com/microsoft/Focal-Transformer)
- End-to-End Semi-Supervised Object Detection with Soft Teacher, ICCV2021[[paper]](https://arxiv.org/abs/2106.09018)[[github]](https://github.com/microsoft/SoftTeacher)
- CBNetV2: A Novel Composite Backbone Network Architecture for Object Detection [[paper]](http://arxiv.org/abs/2107.00420)[[github]](https://github.com/VDIGPKU/CBNetV2)
- Instances as Queries, ICCV2021 [[paper]](https://openaccess.thecvf.com/content/ICCV2021/papers/Fang_Instances_As_Queries_ICCV_2021_paper.pdf)[[github]](https://github.com/hustvl/QueryInst)
Loading

0 comments on commit f003656

Please sign in to comment.