Z = np.dot(W,A) + b
A = relu(Z)
orA = sigmoid(Z)
1. 初始化网络参数
2. 前向传播
2.1 计算线性求和部分
2.2 计算激活函数部分
2.3 结合求和函数与激活函数
3. 计算LOSS
4. 反向传播
4.1 线性部分的反向传播
4.2 激活函数的反向传播
4.3 结合线性部分跟激活函数的方向传播公式
5.更新参数
6. TO 1
***PS:***每一个前向函数都会对应一个后向函数
import numpy as np
import h5py
import matplotlib.pyplot as plt
#以下三个是引用别人的,之后考虑自己实现
import testCases
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
import lr_utils
#为了检验结果
np.random.seed(1)
def initialize_parameters(n_x,n_h,n_y):
#输入层跟隐藏层之间的参数
W1 = np.random.randn(n_h, n_x) * 0.01;
b1 = np.zeros((n_h, 1))
#隐藏层跟输出层之间的参数
W2 = np.random.randn(n_y,n_h) * 0.01;
b2 = np.zeros((n_y, 1))
#使用断言保证矩阵的行列值符合要求
assert(W1.shape == (n_h, n_x))
assert(b1.shape == (n_h, 1))
assert(W2.shape == (n_y, n_h))
assert(b2.shape == (n_y, 1))
parameters = {
"W1":W1,
"b1":b1,
"W2":W2,
"b2":b2
}
return parameters
print("====================测试initialize_parameters======================")
parameters = initialize_parameters(3, 2, 1)
print("W1 =" + str(parameters["W1"]))
print("b1 =" + str(parameters["b1"]))
print("W2 =" + str(parameters["W2"]))
print("b2 =" + str(parameters["b2"]))
def initialize_parameters_deep(layers_dims):
np.random.seed(3)
parameters = {}
L = len(layers_dims)
for i in range(1, L):
parameters["W" + str(i)] = np.random.randn(layers_dims[i], layers_dims[i - 1] )/ np.sqrt(layers_dims[i - 1])
parameters["b" + str(i)] = np.zeros((layers_dims[i], 1))
#确保数据的格式是正确的
assert(parameters["W" + str(i)].shape == (layers_dims[i], layers_dims[i - 1]))
assert(parameters["b" + str(i)].shape == (layers_dims[i], 1))
return parameters
print("=================测试initialize_parameters_deep===================")
layers_dims = [5, 4, 3]
parameters = initialize_parameters_deep(layers_dims)
print("W1 =" + str(parameters["W1"]))
print("b1 =" + str(parameters["b1"]))
print("W2 =" + str(parameters["W2"]))
print("b2 =" + str(parameters["b2"]))
1. LINEAR
2. LINEAR->ACTIVATION
3. [LINEAR -> RELU] X (L - 1)- > LINEAR - > SIGMOID(整个模型)
def linear_forward(A,W,b):
Z = np.dot(W,A) + b
assert(Z.shape == (W.shape[0],A.shape[1]))
cache = (A,W,b)
return Z,cache
print("===========测试线性部分===========")
A,W,b = testCases.linear_forward_test_case()
Z,linear_cache = linear_forward(A,W,b)
print("Z = " + str(Z))
def linear_activation_forward(A_prev,W,b,activation):
if activation == "sigmoid":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = sigmoid(Z)
elif activation == "relu":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = relu(Z)
assert(A.shape == (W.shape[0],A_prev.shape[1]))
cache = (linear_cache, activation_cache)
return A,cache
print("测试linear_activation_forward")
A_prev, W, b = testCases.linear_activation_forward_test_case()
A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
print("sigmoid, A = " + str(A))
A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
print("ReLU, A = " + str(A))
def L_model_forward(X, parameters):
caches = []
A = X
L = len(parameters) // 2
for l in range(1,L):
A_prev = A
A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)],"relu")
caches.append(cache)
AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid")
caches.append(cache)
assert(AL.shape == (1, X.shape[1]))
return AL, caches
print("测试L_model_forward")
X,parameters = testCases.L_model_forward_test_case()
AL,caches = L_model_forward(X, parameters)
print("AL = " + str(AL))
print("caches的长度为:" + str(len(caches)))
def compute_cost(AL, Y):
m = Y.shape[1]
cost = -np.sum(np.multiply(np.log(AL),Y) + np.multiply(np.log(1 - AL), 1 - Y)) / m
cost = np.squeeze(cost)
assert(cost.shape == ())
return cost
print("测试compute_cost")
Y,AL = testCases.compute_cost_test_case()
print("cost=" + str(compute_cost(AL, Y)))
- LINEAR 后向计算
- LINEAR -> ACTIVATION 后向计算,其中ACTIVATION 计算Relu或者Sigmoid 的结果
- [LINEAR -> RELU] (L-1) -> LINEAR -> SIGMOID 后向计算 (整个模型)
def linear_backward(dZ,cache):
A_prev, W, b = cache
m = A_prev.shape[1]
dW = np.dot(dZ, A_prev.T) / m
db = np.sum(dZ, axis = 1, keepdims=True) / m
dA_prev = np.dot(W.T, dZ)
assert (dA_prev.shape == A_prev.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)
return dA_prev, dW, db
print("测试linear_backward")
dZ, linear_cache = testCases.linear_backward_test_case()
dA_prev, dW, db = linear_backward(dZ, linear_cache)
print("dA_prev = " + str(dA_prev))
print("dW = " + str(dW))
print("db = " + str(db))
def linear_activation_backward(dA, cache, activation = "relu"):
linear_cache, activation_cache = cache
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db
print("==============测试linear_activation_backward==============")
AL, linear_activation_cache = testCases.linear_activation_backward_test_case()
dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid")
print ("sigmoid:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db) + "\n")
dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu")
print ("relu:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
def L_model_backward(AL, Y, caches):
grads = {}
L = len(caches)
m = AL.shape[1]
Y = Y.reshape(AL.shape)
dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
current_cache = caches[L - 1]
grads["dA" + str(L)], grads["dW" + str(L)],grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")
for l in reversed(range(L - 1)):
current_cache = caches[l]
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")
grads["dA" + str(l + 1)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp
return grads
print("测试model_backward")
AL, Y_assess, caches = testCases.L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dA1 = "+ str(grads["dA1"]))
def update_parameters(parameters, grads, learning_rate):
L = len(parameters) // 2
for l in range(L):
parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
return parameters
print("==============测试update_parameters==============")
parameters, grads = testCases.update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)
print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))
def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False, isPlot=True):
np.random.seed(1)
grads = {}
costs = []
(n_x,n_h,n_y) = layers_dims
#初始化参数
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
#开始迭代
for i in range(0, num_iterations):
#前向传播
A1, cache1 = linear_activation_forward(X, W1, b1, "relu")
A2, cache2 = linear_activation_forward(A1, W2, b2, "sigmoid")
#计算成本
cost = compute_cost(A2,Y)
#初始化后向传播
dA2 = -(np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
#向后传播
dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid")
dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu")
#传播完的数据进行保存
grads["dW1"] = dW1
grads["db1"] = db1
grads["dW2"] = dW2
grads["db2"] = db2
#更新参数
parameters = update_parameters(parameters, grads, learning_rate)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
#打印成本值
if i % 100 == 0:
#记录成本
costs.append(cost)
#是否打印成本
if print_cost:
print("第"+str(i)+"次迭代,成本值为:",np.squeeze(cost))
#迭代完成,根据添加画图
if isPlot:
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterstions(per tenss)')
plt.title("Learning rate - " + str(learning_rate))
plt.show()
return parameters
train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()
train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y
n_x = 12288
n_h = 7
n_y = 1
layers_dims = (n_x,n_h,n_y)
parameters = two_layer_model(train_x, train_set_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True,isPlot=True)
def predict(X, y, parameters):
m = X.shape[1]
n = len(parameters) // 2
p = np.zeros((1,m))
probas, caches = L_mdoel_forward(X, parameters)
for i in range(0, prodas.shape[1]):
if prodas[0,i] > 0.5:
p[0,i] = 1
else
p[0,i] = 0
print("准确度:" + str(float(np.sum((p == y))/m)))
return p
predictions_train = predict(train_x, train_y, parameters) #训练集
predictions_test = predict(test_x, test_y, parameters) #测试集
def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False,isPlot=True):
np.random.seed(1)
costs = []
parameters = initialize_parameters_deep(layers_dims)
for i in range(0,num_iterations):
AL , caches = L_model_forward(X,parameters)
cost = compute_cost(AL,Y)
grads = L_model_backward(AL,Y,caches)
parameters = update_parameters(parameters,grads,learning_rate)
#打印成本值,如果print_cost=False则忽略
if i % 100 == 0:
#记录成本
costs.append(cost)
#是否打印成本值
if print_cost:
print("第", i ,"次迭代,成本值为:" ,np.squeeze(cost))
#迭代完成,根据条件绘制图
if isPlot:
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()
train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y
layers_dims = [12288, 20, 7, 5, 1] # 5-layer model
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True,isPlot=True)
def print_mislabeled_images(classes, X, y, p):
"""
绘制预测和实际不同的图像。
X - 数据集
y - 实际的标签
p - 预测
"""
a = p + y
mislabeled_indices = np.asarray(np.where(a == 1))
plt.rcParams['figure.figsize'] = (40.0, 40.0) # set default size of plots
num_images = len(mislabeled_indices[0])
for i in range(num_images):
index = mislabeled_indices[1][i]
plt.subplot(2, num_images, i + 1)
plt.imshow(X[:,index].reshape(64,64,3), interpolation='nearest')
plt.axis('off')
plt.title("Prediction: " + classes[int(p[0,index])].decode("utf-8") + " \n Class: " + classes[y[0,index]].decode("utf-8"))
print_mislabeled_images(classes, test_x, test_y, pred_test)