Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] add SEAME kaldi recipes #3063

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions egs/seame/s5/cmd.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
# you can change cmd.sh depending on what type of queue you are using.
# If you have no queueing system and want to run on a local machine, you
# can change all instances 'queue.pl' to run.pl (but be careful and run
# commands one by one: most recipes will exhaust the memory on your
# machine). queue.pl works with GridEngine (qsub). slurm.pl works
# with slurm. Different queues are configured differently, with different
# queue names and different ways of specifying things like memory;
# to account for these differences you can create and edit the file
# conf/queue.conf to match your queue's configuration. Search for
# conf/queue.conf in http://kaldi-asr.org/doc/queue.html for more information,
# or search for the string 'default_config' in utils/queue.pl or utils/slurm.pl.

export train_cmd="retry.pl queue.pl --mem 2G"
export decode_cmd="retry.pl queue.pl --mem 4G"
export mkgraph_cmd="retry.pl queue.pl --mem 8G"
1 change: 1 addition & 0 deletions egs/seame/s5/conf
82 changes: 82 additions & 0 deletions egs/seame/s5/local/chain/run_chain_common.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
#!/bin/bash

# this script has common stages shared across librispeech chain recipes.
# It generates a new topology in a new lang directory, gets the alignments as
# lattices, and builds a tree for the new topology
set -e

stage=11

# input directory names. These options are actually compulsory, and they have
# been named for convenience
gmm_dir=
ali_dir=
lores_train_data_dir=

num_leaves=6000

# output directory names. They are also compulsory.
lang=
lat_dir=
tree_dir=
# End configuration section.
echo "$0 $@" # Print the command line for logging

. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh

[ -z $lang ] && echo "Set --lang, this specifies the new lang directory which will have the new topology" && exit 1;
[ -z $lat_dir ] && echo "Set --lat-dir, this specifies the experiment directory to store lattice" && exit 1;
[ -z $tree_dir ] && echo "Set --tree-dir, this specifies the directory to store new tree " && exit 1;

for f in $gmm_dir/final.mdl $ali_dir/ali.1.gz $lores_train_data_dir/feats.scp; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done

if [ $stage -le 11 ]; then
echo "$0: creating lang directory with one state per phone."
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
if [ -d $lang ]; then
if [ $lang/L.fst -nt data/lang/L.fst ]; then
echo "$0: $lang already exists, not overwriting it; continuing"
else
echo "$0: $lang already exists and seems to be older than data/lang..."
echo " ... not sure what to do. Exiting."
exit 1;
fi
else
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
fi

if [ $stage -le 12 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
nj=$(cat ${ali_dir}/num_jobs) || exit 1;
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" ${lores_train_data_dir} \
$lang $gmm_dir $lat_dir
rm $lat_dir/fsts.*.gz # save space
fi

if [ $stage -le 13 ]; then
# Build a tree using our new topology. We know we have alignments for the
# speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use
# those.
if [ -f $tree_dir/final.mdl ]; then
echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it."
exit 1;
fi
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" $num_leaves ${lores_train_data_dir} $lang $ali_dir $tree_dir
fi

exit 0;
203 changes: 203 additions & 0 deletions egs/seame/s5/local/chain/tuning/run_tdnn_1a.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
#!/bin/bash

# 1a matches the model and parameters in wsj 1g recipe.

set -e -o pipefail

# configs for 'chain'
stage=0
decode_nj=50
train_set=train
gmm=tri3 # this is the source gmm-dir that we'll use for alignments; it should
# have alignments for the specified training data.
nnet3_affix= # affix for exp dirs, e.g. it was _cleaned in librispeech

# Options which are not passed through to run_ivector_common.sh
affix=1a #affix for TDNN directory e.g. "1a" or "1b", in case we change the configuration.
tree_affix=
train_stage=-10
get_egs_stage=-10

# TDNN options
frames_per_eg=140,100,160
remove_egs=true
srand=0
common_egs_dir=
xent_regularize=0.1
dropout_schedule='0,[email protected],[email protected],0'
num_epochs=5

# decode options
test_online_decoding=false # if true, it will run the last decoding stage.

# End configuration section.
echo "$0 $@" # Print the command line for logging

. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh

if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 11" if you have already
# run those things.

local/nnet3/run_ivector_common.sh --stage $stage \
--train-set $train_set \
--gmm $gmm \
--num-threads-ubm 6 --num-processes 3 \
--nnet3-affix "$nnet3_affix" || exit 1;

gmm_dir=exp/$gmm
ali_dir=exp/${gmm}_ali_${train_set}_sp
tree_dir=exp/chain${nnet3_affix}/tree_sp${tree_affix:+_$tree_affix}
lang=data/lang_chain
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats
dir=exp/chain${nnet3_affix}/tdnn${affix:+_$affix}_sp
train_data_dir=data/${train_set}_sp_hires
lores_train_data_dir=data/${train_set}_sp
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires

# if we are using the speed-perturbed data we need to generate
# alignments for it.

for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
$lores_train_data_dir/feats.scp $ali_dir/ali.1.gz; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done

# Please take this as a reference on how to specify all the options of
# local/chain/run_chain_common.sh
# ref for the number of tree leaves is from wsj recipe: local/chain/tuning/run_tdnn_1g.sh
local/chain/run_chain_common.sh --stage $stage \
--gmm-dir $gmm_dir \
--ali-dir $ali_dir \
--lores-train-data-dir ${lores_train_data_dir} \
--lang $lang \
--lat-dir $lat_dir \
--num-leaves 3500 \
--tree-dir $tree_dir || exit 1;

if [ $stage -le 14 ]; then
echo "$0: creating neural net configs using the xconfig parser";

num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}')
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python)
affine_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true"
tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66"
linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0"
prefinal_opts="l2-regularize=0.01"
output_opts="l2-regularize=0.005"

mkdir -p $dir/configs

cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input

# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat

# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1024
tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=0
tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
linear-component name=prefinal-l dim=192 $linear_opts

prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1024 small-dim=192
output-layer name=output include-log-softmax=false dim=$num_targets $output_opts

prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1024 small-dim=192
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi

if [ $stage -le 15 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b{09,10,11,12}/$USER/kaldi-data/egs/seame-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi

steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir $train_ivector_dir \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.0 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--egs.dir "$common_egs_dir" \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0 --constrained false" \
--egs.chunk-width $frames_per_eg \
--trainer.dropout-schedule $dropout_schedule \
--trainer.srand=$srand \
--trainer.max-param-change 2.0 \
--trainer.add-option="--optimization.memory-compression-level=2" \
--trainer.num-chunk-per-minibatch 128,64 \
--trainer.frames-per-iter 500000 \
--trainer.num-epochs $num_epochs \
--trainer.optimization.num-jobs-initial 2 \
--trainer.optimization.num-jobs-final 8 \
--trainer.optimization.initial-effective-lrate 0.0005 \
--trainer.optimization.final-effective-lrate 0.00005 \
--cleanup.remove-egs $remove_egs \
--feat-dir $train_data_dir \
--tree-dir $tree_dir \
--lat-dir $lat_dir \
--dir $dir || exit 1;

fi

graph_dir=$dir/graph
if [ $stage -le 16 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 --remove-oov data/lang_test $dir $graph_dir
# remove <UNK> from the graph, and convert back to const-FST.
fstrmsymbols --apply-to-output=true --remove-arcs=true "echo 3|" $graph_dir/HCLG.fst - | \
fstconvert --fst_type=const > $graph_dir/temp.fst
mv $graph_dir/temp.fst $graph_dir/HCLG.fst
fi

if [ $stage -le 17 ]; then
frames_per_chunk=$(echo $frames_per_eg | cut -d, -f1)
rm $dir/.error 2>/dev/null || true
for decode_set in dev_man dev_sge; do
(
nspk=$(wc -l <data/${decode_set}_hires/spk2utt)
steps/nnet3/decode.sh \
--acwt 1.0 --post-decode-acwt 10.0 \
--frames-per-chunk $frames_per_chunk \
--nj $nspk --cmd "$decode_cmd" --num-threads 4 \
--online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \
$graph_dir data/${decode_set}_hires $dir/decode_${decode_set} || exit 1
) || touch $dir/.error &
done
wait
[ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1
fi

exit 0;
Loading