A semisorted, working list of ML (mostly deep learning) papers relating to chemistry, biology, and drug discovery.
-
"Deep Learning for Computational Chemistry." Goh, G. B.; Hoda, N. O.; Vishnu, A. J. Comput. Chem. 2017, DOI: 10.1002/jcc.24764
-
"A Renaissance of Neural Networks in Drug Discovery." Baskin, I. I.; Winkler, D.; Tetko, I. V. Exp. Op. Drug Disc. 2016, 11 785. DOI: 10.1080/17460441
-
"Deep Learning in Drug Discovery." Gawehn, E.; Hiss, J. A.; Schneider, G. Mol. Inf. 2016, 35, 3.
-
"Have Artificial Neural Networks Met Expectations in Drug Discovery as Implemented in QSAR framework?" Dobchev, D. & Karelson, M. Expert Opin. Drug Discov. 2016, 11, 627.
-
"The Next Era: Deep Learning in Pharmaceutical Research." Ekins, S. Pharm. Res. 2016, 33, 2594.
- "Machine-learning approaches in drug discovery: methods and applications." Lavecchia, A. Drug Discov. Today, 2015, 20, 318.
- "Machine learning methods in chemoinformatics." Mitchell, J. B. O. WIREs Comput. Mol. Sci. 2014, 4, 468.
- "Convolutional Networks on Graphs for Learning Molecular Fingerprints" David Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gomez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P.
- "Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules." Gómez-Bombarelli, R.; David Duvenaud, D.; Hernandez-Lobato, J. M.; Aguilera-Iparraguirre, J.; Adams, R. P.; Aspuru-Guzik, A.
- "Molecular graph convolutions: moving beyond fingerprints." Kearnes, S. McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. J. Computer Aided Drug Design. 2016, 30, 595.
- "Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity." Gomes, J.; Ramsundar, B.; Feinberg, E. N.; Pande, V. S.
- "ANI-1: An Extensible Neural Network Potential with DFT accuracy at force field computational cost"
- "Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than DFT accuracy."
- "Neural Message Passing for Quantum Chemistry."
- "Low Data Drug Discovery with One-Shot Learning."
- "Multi-task Neural Networks for QSAR Predictions" Dahl, G. E.; Jaitly, N.; Salakhutdinov, R.
- "Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships." Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. J. Chem. Inf. Model. 2015, 55, 263.
- "Toxicity Prediction using Deep Learning."
- "Deep Learning as an Opportunity in Virtual Screening." Unterthiner, T.; Mayr, A.; Klambauer, G. NIPS 2014.
- "Massively Multitask Networks for Drug Discovery."
- https://arxiv.org/abs/1502.02072
- "Deep Learning Applications for Predicting Pharamcological Properties of Drugs and Drug Repurposing Using Transcriptomic Data."
- "Molecular Fingerprint-Baesd Artificial Neural Networks QSAR for Ligand Biological Activity Predictions."
- "MoleculeNet: A Benchmark for Molecular Machine Learning."
- "The Cornucopia of Meaningful Leads: Applying Deep Adversarial Autoencoders for New Molecule Development in Oncology"
- "Deep Architectures and Deep Learning in Chemoinformatics: the Prediction of Aqueous Solubility for Drug-like Molecules" Lusci, A., Pollastri, G. & Baldi, P. J. Chem. Inf. Model. 53, 1563–1575 (2013).
- "Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism." Hughes, T. B.; Swamidass. S. J. Chem. Res. Toxicol. 2017, 30, 642.
- "Modeling Epoxidation of Drug-like Molecules with a Deep Learning Network." Hughes, T. B.; Miller, G. P.; Swamidass, S. J. ACS Cent. Sci, 2015, 1, 168.
- "Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network." Hughes, T. B.; Dang, N. L.; Miller, G. P.; Swamidass, S. J. ACS Cent Sci. 2016, 2, 529.
- "Deep Learning for Drug-Induced Liver Injury." Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. J. Chem. Inf. Model. 2015, 55,2085.
-
"AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery." Wallach, I.; Dzamba, M.; Heifets, A. 2015. arXiv:1510.02855v1
-
"NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein−Ligand Complexes" Durrant, J. D.; McCammon, J. A. J. Chem. Inf. Model. 2010, 50, 1865.
-
"NNScore 2.0: A Neural-Network Receptor–Ligand Scoring Function"
-
"Predicting Ligand Binding Modes from Neural Networks Trained on Protein–Ligand Interaction Fingerprints"
-
"Protein–Ligand Scoring with Convolutional Neural Networks." Matthew Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D. R. J. Chem. Inf. Model. 2017, 57, 942.
-
"Learning Deep Architectures for Interaction Prediction in Structure-based Virtual Screening." Gonczarek, A.; Tomczak, J. M; Zareba, S.; Kaczmar, J.; Dabrowski, P,; Walczak, M. J. arXiv:1610.07187. 2016
- "Neural Networks for the Prediction of Organic Chemistry Reactions" Wei, J. N.; Duvenaud, Aspuru-Guzik, A. ACS Cent Sci 2016, 2, 725.
- "Prediction of Organic Reaction Outcomes Using Machine Learning" Coley, C. W.; Barzilay, R.; Jaakola, T. S.; Green, W. H.; Jensen, K. F. ACS Cent Sci 2017.