-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7184f94
commit dac79e6
Showing
12 changed files
with
1,228 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
from __future__ import print_function | ||
from __future__ import division | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.nn import Parameter | ||
import math | ||
|
||
|
||
class ArcMarginProduct(nn.Module): | ||
r"""Implement of large margin arc distance: : | ||
Args: | ||
in_features: size of each input sample | ||
out_features: size of each output sample | ||
s: norm of input feature | ||
m: margin | ||
cos(theta + m) | ||
""" | ||
def __init__(self, in_features, out_features, s=30.0, m=0.50, easy_margin=False): | ||
super(ArcMarginProduct, self).__init__() | ||
self.in_features = in_features | ||
self.out_features = out_features | ||
self.s = s | ||
self.m = m | ||
self.weight = Parameter(torch.FloatTensor(out_features, in_features)) | ||
nn.init.xavier_uniform_(self.weight) | ||
|
||
self.easy_margin = easy_margin | ||
self.cos_m = math.cos(m) | ||
self.sin_m = math.sin(m) | ||
self.th = math.cos(math.pi - m) | ||
self.mm = math.sin(math.pi - m) * m | ||
|
||
def forward(self, input, label): | ||
# --------------------------- cos(theta) & phi(theta) --------------------------- | ||
cosine = F.linear(F.normalize(input), F.normalize(self.weight)) | ||
sine = torch.sqrt((1.0 - torch.pow(cosine, 2)).clamp(0, 1)) | ||
phi = cosine * self.cos_m - sine * self.sin_m | ||
if self.easy_margin: | ||
phi = torch.where(cosine > 0, phi, cosine) | ||
else: | ||
phi = torch.where(cosine > self.th, phi, cosine - self.mm) | ||
# --------------------------- convert label to one-hot --------------------------- | ||
# one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda') | ||
one_hot = torch.zeros(cosine.size(), device='cuda') | ||
one_hot.scatter_(1, label.view(-1, 1).long(), 1) | ||
# -------------torch.where(out_i = {x_i if condition_i else y_i) ------------- | ||
output = (one_hot * phi) + ((1.0 - one_hot) * cosine) # you can use torch.where if your torch.__version__ is 0.4 | ||
output *= self.s | ||
# print(output) | ||
|
||
return output | ||
|
||
|
||
class AddMarginProduct(nn.Module): | ||
r"""Implement of large margin cosine distance: : | ||
Args: | ||
in_features: size of each input sample | ||
out_features: size of each output sample | ||
s: norm of input feature | ||
m: margin | ||
cos(theta) - m | ||
""" | ||
|
||
def __init__(self, in_features, out_features, s=30.0, m=0.40): | ||
super(AddMarginProduct, self).__init__() | ||
self.in_features = in_features | ||
self.out_features = out_features | ||
self.s = s | ||
self.m = m | ||
self.weight = Parameter(torch.FloatTensor(out_features, in_features)) | ||
nn.init.xavier_uniform_(self.weight) | ||
|
||
def forward(self, input, label): | ||
# --------------------------- cos(theta) & phi(theta) --------------------------- | ||
cosine = F.linear(F.normalize(input), F.normalize(self.weight)) | ||
phi = cosine - self.m | ||
# --------------------------- convert label to one-hot --------------------------- | ||
one_hot = torch.zeros(cosine.size(), device='cuda') | ||
# one_hot = one_hot.cuda() if cosine.is_cuda else one_hot | ||
one_hot.scatter_(1, label.view(-1, 1).long(), 1) | ||
# -------------torch.where(out_i = {x_i if condition_i else y_i) ------------- | ||
output = (one_hot * phi) + ((1.0 - one_hot) * cosine) # you can use torch.where if your torch.__version__ is 0.4 | ||
output *= self.s | ||
# print(output) | ||
|
||
return output | ||
|
||
def __repr__(self): | ||
return self.__class__.__name__ + '(' \ | ||
+ 'in_features=' + str(self.in_features) \ | ||
+ ', out_features=' + str(self.out_features) \ | ||
+ ', s=' + str(self.s) \ | ||
+ ', m=' + str(self.m) + ')' | ||
|
||
|
||
class SphereProduct(nn.Module): | ||
r"""Implement of large margin cosine distance: : | ||
Args: | ||
in_features: size of each input sample | ||
out_features: size of each output sample | ||
m: margin | ||
cos(m*theta) | ||
""" | ||
def __init__(self, in_features, out_features, m=4): | ||
super(SphereProduct, self).__init__() | ||
self.in_features = in_features | ||
self.out_features = out_features | ||
self.m = m | ||
self.base = 1000.0 | ||
self.gamma = 0.12 | ||
self.power = 1 | ||
self.LambdaMin = 5.0 | ||
self.iter = 0 | ||
self.weight = Parameter(torch.FloatTensor(out_features, in_features)) | ||
nn.init.xavier_uniform(self.weight) | ||
|
||
# duplication formula | ||
self.mlambda = [ | ||
lambda x: x ** 0, | ||
lambda x: x ** 1, | ||
lambda x: 2 * x ** 2 - 1, | ||
lambda x: 4 * x ** 3 - 3 * x, | ||
lambda x: 8 * x ** 4 - 8 * x ** 2 + 1, | ||
lambda x: 16 * x ** 5 - 20 * x ** 3 + 5 * x | ||
] | ||
|
||
def forward(self, input, label): | ||
# lambda = max(lambda_min,base*(1+gamma*iteration)^(-power)) | ||
self.iter += 1 | ||
self.lamb = max(self.LambdaMin, self.base * (1 + self.gamma * self.iter) ** (-1 * self.power)) | ||
|
||
# --------------------------- cos(theta) & phi(theta) --------------------------- | ||
cos_theta = F.linear(F.normalize(input), F.normalize(self.weight)) | ||
cos_theta = cos_theta.clamp(-1, 1) | ||
cos_m_theta = self.mlambda[self.m](cos_theta) | ||
theta = cos_theta.data.acos() | ||
k = (self.m * theta / 3.14159265).floor() | ||
phi_theta = ((-1.0) ** k) * cos_m_theta - 2 * k | ||
NormOfFeature = torch.norm(input, 2, 1) | ||
|
||
# --------------------------- convert label to one-hot --------------------------- | ||
one_hot = torch.zeros(cos_theta.size()) | ||
one_hot = one_hot.cuda() if cos_theta.is_cuda else one_hot | ||
one_hot.scatter_(1, label.view(-1, 1), 1) | ||
|
||
# --------------------------- Calculate output --------------------------- | ||
output = (one_hot * (phi_theta - cos_theta) / (1 + self.lamb)) + cos_theta | ||
output *= NormOfFeature.view(-1, 1) | ||
|
||
return output | ||
|
||
def __repr__(self): | ||
return self.__class__.__name__ + '(' \ | ||
+ 'in_features=' + str(self.in_features) \ | ||
+ ', out_features=' + str(self.out_features) \ | ||
+ ', m=' + str(self.m) + ')' |