forked from microsoft/autogen
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Initial commit of Mistral client class * Updated to manage final system message for reflection_with_llm * Add Mistral support to client class * Add Mistral support across the board (based on Gemini changes) * Test file for Mistral client * Updated handling of config, added notebook for documentation * Added support for additional API parameters * Remove unneeded code, updated exception raising * Updated handling of keywords, including type checks, defaults, warnings. Updated notebook example to remove logging warnings. * Added class description. * Updated tests to support new config handling. * Moved parameter parsing to create function, minimised init, added parameter tests * Refined parameter validation * Correct spacing * Fixed string concat in parameter validation * Corrected upper/lower bound warning * Use client_tools, tidy up Mistral create, better handle tool call response, tidy tests * Update of documentation notebook, replacement of old version * Update to handle multiple tool_call recommendations in a message * Updated tests to accommodate multiple tool_calls as well as content in message * Update autogen/oai/mistral.py comment Co-authored-by: Qingyun Wu <[email protected]> * cleanup, rewrite mock * update --------- Co-authored-by: Qingyun Wu <[email protected]> Co-authored-by: kevin666aa <[email protected]>
- Loading branch information
1 parent
dd0024c
commit 27e3690
Showing
11 changed files
with
873 additions
and
267 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
"""Create an OpenAI-compatible client using Mistral.AI's API. | ||
Example: | ||
llm_config={ | ||
"config_list": [{ | ||
"api_type": "mistral", | ||
"model": "open-mixtral-8x22b", | ||
"api_key": os.environ.get("MISTRAL_API_KEY") | ||
} | ||
]} | ||
agent = autogen.AssistantAgent("my_agent", llm_config=llm_config) | ||
Install Mistral.AI python library using: pip install --upgrade mistralai | ||
Resources: | ||
- https://docs.mistral.ai/getting-started/quickstart/ | ||
""" | ||
|
||
# Important notes when using the Mistral.AI API: | ||
# The first system message can greatly affect whether the model returns a tool call, including text that references the ability to use functions will help. | ||
# Changing the role on the first system message to 'user' improved the chances of the model recommending a tool call. | ||
|
||
import inspect | ||
import json | ||
import os | ||
import time | ||
import warnings | ||
from typing import Any, Dict, List, Tuple, Union | ||
|
||
# Mistral libraries | ||
# pip install mistralai | ||
from mistralai.client import MistralClient | ||
from mistralai.exceptions import MistralAPIException | ||
from mistralai.models.chat_completion import ChatCompletionResponse, ChatMessage, ToolCall | ||
from openai.types.chat import ChatCompletion, ChatCompletionMessageToolCall | ||
from openai.types.chat.chat_completion import ChatCompletionMessage, Choice | ||
from openai.types.completion_usage import CompletionUsage | ||
from typing_extensions import Annotated | ||
|
||
from autogen.oai.client_utils import should_hide_tools, validate_parameter | ||
|
||
|
||
class MistralAIClient: | ||
"""Client for Mistral.AI's API.""" | ||
|
||
def __init__(self, **kwargs): | ||
"""Requires api_key or environment variable to be set | ||
Args: | ||
api_key (str): The API key for using Mistral.AI (or environment variable MISTRAL_API_KEY needs to be set) | ||
""" | ||
# Ensure we have the api_key upon instantiation | ||
self.api_key = kwargs.get("api_key", None) | ||
if not self.api_key: | ||
self.api_key = os.getenv("MISTRAL_API_KEY", None) | ||
|
||
assert ( | ||
self.api_key | ||
), "Please specify the 'api_key' in your config list entry for Mistral or set the MISTRAL_API_KEY env variable." | ||
|
||
def message_retrieval(self, response: ChatCompletionResponse) -> Union[List[str], List[ChatCompletionMessage]]: | ||
"""Retrieve the messages from the response.""" | ||
|
||
return [choice.message for choice in response.choices] | ||
|
||
def cost(self, response) -> float: | ||
return response.cost | ||
|
||
def parse_params(self, params: Dict[str, Any]) -> Dict[str, Any]: | ||
"""Loads the parameters for Mistral.AI API from the passed in parameters and returns a validated set. Checks types, ranges, and sets defaults""" | ||
mistral_params = {} | ||
|
||
# 1. Validate models | ||
mistral_params["model"] = params.get("model", None) | ||
assert mistral_params[ | ||
"model" | ||
], "Please specify the 'model' in your config list entry to nominate the Mistral.ai model to use." | ||
|
||
# 2. Validate allowed Mistral.AI parameters | ||
mistral_params["temperature"] = validate_parameter(params, "temperature", (int, float), True, 0.7, None, None) | ||
mistral_params["top_p"] = validate_parameter(params, "top_p", (int, float), True, None, None, None) | ||
mistral_params["max_tokens"] = validate_parameter(params, "max_tokens", int, True, None, (0, None), None) | ||
mistral_params["safe_prompt"] = validate_parameter( | ||
params, "safe_prompt", bool, False, False, None, [True, False] | ||
) | ||
mistral_params["random_seed"] = validate_parameter(params, "random_seed", int, True, None, False, None) | ||
|
||
# 3. Convert messages to Mistral format | ||
mistral_messages = [] | ||
tool_call_ids = {} # tool call ids to function name mapping | ||
for message in params["messages"]: | ||
if message["role"] == "assistant" and "tool_calls" in message and message["tool_calls"] is not None: | ||
# Convert OAI ToolCall to Mistral ToolCall | ||
openai_toolcalls = message["tool_calls"] | ||
mistral_toolcalls = [] | ||
for toolcall in openai_toolcalls: | ||
mistral_toolcall = ToolCall(id=toolcall["id"], function=toolcall["function"]) | ||
mistral_toolcalls.append(mistral_toolcall) | ||
mistral_messages.append( | ||
ChatMessage(role=message["role"], content=message["content"], tool_calls=mistral_toolcalls) | ||
) | ||
|
||
# Map tool call id to the function name | ||
for tool_call in message["tool_calls"]: | ||
tool_call_ids[tool_call["id"]] = tool_call["function"]["name"] | ||
|
||
elif message["role"] in ("system", "user", "assistant"): | ||
# Note this ChatMessage can take a 'name' but it is rejected by the Mistral API if not role=tool, so, no, the 'name' field is not used. | ||
mistral_messages.append(ChatMessage(role=message["role"], content=message["content"])) | ||
|
||
elif message["role"] == "tool": | ||
# Indicates the result of a tool call, the name is the function name called | ||
mistral_messages.append( | ||
ChatMessage( | ||
role="tool", | ||
name=tool_call_ids[message["tool_call_id"]], | ||
content=message["content"], | ||
tool_call_id=message["tool_call_id"], | ||
) | ||
) | ||
else: | ||
warnings.warn(f"Unknown message role {message['role']}", UserWarning) | ||
|
||
# If a 'system' message follows an 'assistant' message, change it to 'user' | ||
# This can occur when using LLM summarisation | ||
for i in range(1, len(mistral_messages)): | ||
if mistral_messages[i - 1].role == "assistant" and mistral_messages[i].role == "system": | ||
mistral_messages[i].role = "user" | ||
|
||
mistral_params["messages"] = mistral_messages | ||
|
||
# 4. Add tools to the call if we have them and aren't hiding them | ||
if "tools" in params: | ||
hide_tools = validate_parameter( | ||
params, "hide_tools", str, False, "never", None, ["if_all_run", "if_any_run", "never"] | ||
) | ||
if not should_hide_tools(params["messages"], params["tools"], hide_tools): | ||
mistral_params["tools"] = params["tools"] | ||
return mistral_params | ||
|
||
def create(self, params: Dict[str, Any]) -> ChatCompletion: | ||
# 1. Parse parameters to Mistral.AI API's parameters | ||
mistral_params = self.parse_params(params) | ||
|
||
# 2. Call Mistral.AI API | ||
client = MistralClient(api_key=self.api_key) | ||
mistral_response = client.chat(**mistral_params) | ||
# TODO: Handle streaming | ||
|
||
# 3. Convert Mistral response to OAI compatible format | ||
if mistral_response.choices[0].finish_reason == "tool_calls": | ||
mistral_finish = "tool_calls" | ||
tool_calls = [] | ||
for tool_call in mistral_response.choices[0].message.tool_calls: | ||
tool_calls.append( | ||
ChatCompletionMessageToolCall( | ||
id=tool_call.id, | ||
function={"name": tool_call.function.name, "arguments": tool_call.function.arguments}, | ||
type="function", | ||
) | ||
) | ||
else: | ||
mistral_finish = "stop" | ||
tool_calls = None | ||
|
||
message = ChatCompletionMessage( | ||
role="assistant", | ||
content=mistral_response.choices[0].message.content, | ||
function_call=None, | ||
tool_calls=tool_calls, | ||
) | ||
choices = [Choice(finish_reason=mistral_finish, index=0, message=message)] | ||
|
||
response_oai = ChatCompletion( | ||
id=mistral_response.id, | ||
model=mistral_response.model, | ||
created=int(time.time() * 1000), | ||
object="chat.completion", | ||
choices=choices, | ||
usage=CompletionUsage( | ||
prompt_tokens=mistral_response.usage.prompt_tokens, | ||
completion_tokens=mistral_response.usage.completion_tokens, | ||
total_tokens=mistral_response.usage.prompt_tokens + mistral_response.usage.completion_tokens, | ||
), | ||
cost=calculate_mistral_cost( | ||
mistral_response.usage.prompt_tokens, mistral_response.usage.completion_tokens, mistral_response.model | ||
), | ||
) | ||
|
||
return response_oai | ||
|
||
@staticmethod | ||
def get_usage(response: ChatCompletionResponse) -> Dict: | ||
return { | ||
"prompt_tokens": response.usage.prompt_tokens if response.usage is not None else 0, | ||
"completion_tokens": response.usage.completion_tokens if response.usage is not None else 0, | ||
"total_tokens": ( | ||
response.usage.prompt_tokens + response.usage.completion_tokens if response.usage is not None else 0 | ||
), | ||
"cost": response.cost if hasattr(response, "cost") else 0, | ||
"model": response.model, | ||
} | ||
|
||
|
||
def calculate_mistral_cost(input_tokens: int, output_tokens: int, model_name: str) -> float: | ||
"""Calculate the cost of the mistral response.""" | ||
|
||
# Prices per 1 million tokens | ||
# https://mistral.ai/technology/ | ||
model_cost_map = { | ||
"open-mistral-7b": {"input": 0.25, "output": 0.25}, | ||
"open-mixtral-8x7b": {"input": 0.7, "output": 0.7}, | ||
"open-mixtral-8x22b": {"input": 2.0, "output": 6.0}, | ||
"mistral-small-latest": {"input": 1.0, "output": 3.0}, | ||
"mistral-medium-latest": {"input": 2.7, "output": 8.1}, | ||
"mistral-large-latest": {"input": 4.0, "output": 12.0}, | ||
} | ||
|
||
# Ensure we have the model they are using and return the total cost | ||
if model_name in model_cost_map: | ||
costs = model_cost_map[model_name] | ||
|
||
return (input_tokens * costs["input"] / 1_000_000) + (output_tokens * costs["output"] / 1_000_000) | ||
else: | ||
warnings.warn(f"Cost calculation is not implemented for model {model_name}, will return $0.", UserWarning) | ||
return 0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.