我们参加了定向赛两个赛道,分别是人体摔倒姿态识别(https://www.kesci.com/home/competition/5df99c5aea206700353c5de8/content/7) 和人群密度检测(https://www.kesci.com/home/competition/5df1d33d23ea6d002b264ada/content/6) 两个比赛的最终成绩分别是第4和第10名。下面对我们的方案进行简单介绍:
主要目的:检测画面中摔倒行人数量,主要用在空巢老人摔倒检测,大型地铁商场的自动扶梯摔倒检测以及地震火灾等自然灾害后搜救机器人搜索摔倒伤员。 骨干网络:KeypointRCNN (FasterRCNN + 关键点检测分支) 训练集(官方不提供):COCO数据集-行人部分 流程:检测出行人的21个身体关键点,然后利用一些列精心设计的规则判断是否摔倒 规则: 根据测试集数据分析,我们设置了以下几种规则
- A. 所检测行人的bbox的宽高比限制(宽>0.7 * 高)
- B. 人体弯曲度:检测行人双肩中心,双胯中点,双膝中点,然后组成两个向量,分别是双胯中点指向双肩膀中点和双胯中点指向双膝中点,计算两者的夹角余弦作为人体弯曲度,大于110则很大可能有摔倒现象。
- C. 检测头和脚的y坐标进行比较
最终摔倒的判断规则是: ( A & B ) | C .这种方法使得大部分测试集图像都能准确判断摔倒行人
经观察,我们发现比赛测试集数据集分辨率大小不等(多少来自网络新闻爬取,质量很差),于是我们选择使用SRGAN超分来提升图像分辨率,获取质量更高的关键点检测结果。
答辩PPT的视频链接:https://www.bilibili.com/video/BV1L7411K7VQ
主要目的:检测画面中人头个数,主要应用是计算人流密集场所的人流量计算,防止像上海外滩等踩踏事件发生。 骨干网络:Res101 训练集(官方不提供):shanghai_tech A 和 B 流程:常规模型检测,density map(转换为密度图),多尺度等策略进行处理,SRGAN提升图像质量。
经观察,即使网络结构简单,使用技巧不多,我们的模型也能很准确的计算出人群密度。