Tags: lanl-ansi/MathOptAI.jl
Tags
[Diff since v0.1.2](v0.1.2...v0.1.3) **Merged pull requests:** - Delete .github/workflows/documentation-deploy.yml (#150) (@odow) - [docs] improve manual for NN extensions (#152) (@odow) - Fix documentation link in README.md (#153) (@odow) - Prep for v0.1.3 (#154) (@odow) **Closed issues:** - Review feedback (#82) - Tag did not trigger documentation build (#145) - [docs] improve manual sections (#151)
**Merged pull requests:** - Add package skeleton and a basic implementation of LinearRegression (#2) (@odow) - Add GLM package extension (#4) (@odow) - Use Predictor instead of Model to distinguish from optimization model (#5) (@odow) - Add support for LogisticRegression (#6) (@odow) - Add docstrings (#7) (@odow) - Add UnivariateNormalDistribution (#8) (@odow) - Add preliminary NN support (#9) (@odow) - Remove add_predictor! (#10) (@odow) - Propagate variable bounds where possible (#11) (@odow) - Pause actions until repo is open-sourced (#12) (@odow) - Simplify to make extensions implement add_predictor (#13) (@odow) - Add test for relu kwarg (#14) (@odow) - Improve variable bound propagation in ReLU layers (#15) (@odow) - Add Omelette.ReLU (#17) (@odow) - Test and fix doctests (#18) (@odow) - Add Sigmoid, SoftPlus, and Tanh layers (#19) (@odow) - Fix test_GLM.jl (#20) (@odow) - Support other activation functions in Lux extension (#21) (@odow) - Tweak GLM logistic regression layer (#22) (@odow) - Rename to MathOptAI.jl (#23) (@odow) - Use predictor consistently instead of model (#24) (@odow) - Add Flux.jl extension (#25) (@odow) - Improve extension docstrings (#26) (@odow) - Rename LinearRegression to Affine (#28) (@odow) - Remove LogisticRegression predictor (#29) (@odow) - Allow non-variable input vectors (#30) (@odow) - Add matrix input/output method for add_predictor (#31) (@odow) - Add StatsModels extension (#32) (@odow) - Make DataFrames a weakdep (#33) (@odow) - Fix code highlighting (#34) (@odow) - Switch to LANL's BSD license (#36) (@odow) - [docs] add MNIST tutorial (#37) (@odow) - Add initial skeleton of the documentation (#38) (@odow) - Rename added variables to moai_ (#39) (@odow) - Add student ennrollment tutorial (#40) (@odow) - Add SoftMax predictor (#41) (@odow) - [docs] add manual section (#42) (@odow) - Add kwarg option to extension methods (#46) (@odow) - Fix Flux Float32 warning (#47) (@odow) - [docs] add design principles (#48) (@odow) - Remove usage of Lux.Experimental (#49) (@odow) - Fix formatting (#50) (@odow) - Fix various docstrings (#51) (@odow) - Add logo (#52) (@odow) - [docs] update mnist tutorial (#53) (@odow) - Add BinaryDecisionTree (#54) (@odow) - [docs] fix BinaryDecisionTree docstring (#55) (@odow) - [docs] add docstrings for extensions (#56) (@odow) - Standardize naming of test modules (#57) (@odow) - Add tests for DecisionTreeExt (#58) (@odow) - [docs] add dimension colum to predictor table (#59) (@odow) - Add AbstractGPsExt (#60) (@odow) - Fix test_DecisionTree for points near breakpoints (#61) (@odow) - Remove UnivariateNormalDistribution in favor of Quantile (#62) (@odow) - [docs] update docs with new extensions (#63) (@odow) - Update README.md (#64) (@odow) - Add PytorchModel and tutorial (#69) (@odow) - Add ReducedSpace{<:AbstractPredictor} layer (#72) (@odow) - Fix tests for update to MOI variable ordering (#73) (@odow) - Add `reduced_space` option for PyTorchModel predictor (#76) (@Robbybp) - Add methods for show(io::IO, ::AbstractPredictor) (#77) (@odow) - Add build_predictor (#78) (@odow) - Add CondaPkg to test/Project.toml (#79) (@odow) - [breaking] return a formulation object (#80) (@odow) - Various miscellaneous fixes (#81) (@odow) - Relax type restrictions to support JuMP.AbstractModel (#83) (@odow) - Allow nested ReducedSpace predictors (#84) (@odow) - Various documentation improvements (#85) (@odow) - [docs] add more design principles and add PyTorch manual page (#86) (@odow) - Fix deprecation warning in tests (#88) (@odow) - Add Scale predictor (#89) (@odow) - [docs] remove Scaling section from design_principles.md (#91) (@odow) - [docs] add inputs are Vectors to design principles (#93) (@odow) - Fix typos in Scale doctest (#94) (@odow) - Fix MethodError with unsupported layers in (F)lux (#95) (@odow) - Add GrayBox predictor (#96) (@odow) - Fix formatting in src/predictors/Scale.jl (#97) (@odow) - Add test/test_PythonCall.jl (#98) (@odow) - [docs] update sources of inspiration (#99) (@odow) - Add Hessian support to GrayBox (#100) (@odow) - [docs] fix doc build and avoid segfault via PythonCall (#103) (@odow) - [docs] add DecisionTree tutorial, tweak other docs (#104) (@odow) - Add a tutorial for Lux (#105) (@odow) - [docs] minor tweaks to the documentation (#106) (@odow) - s/Pytorch/PyTorch/ (#107) (@odow) - Add tutorial for AbstractGPs (#108) (@odow) - Add support for nn.Softplus layer in PyTorch (#111) (@odow) - Add instructions for non-conda python environment (#113) (@Robbybp) - Support `beta` parameter in SoftPlus (#114) (@Robbybp) - Fix typo in SoftMax docs (#115) (@Robbybp) - Tweak LICENSE to match wording from LANL (#117) (@odow) - Add GitHub actions (#118) (@odow) - Update README.md to mention project code (#119) (@odow) - Clarify relationship to OMLT in README (#120) (@odow) - Add documentation to CI (#121) (@odow) - Run GitHub actions CI on pushes to main (#122) (@odow) - Add badges to README (#123) (@odow) - Add CODECOV_TOKEN to Github Actions (#124) (@odow) - Build documentation on push to main (#125) (@odow) - Add documentation link to the README (#126) (@odow) - Make the tests less flakey (#128) (@odow) - Improve code coverage (#129) (@odow) - Improve code coverage (#130) (@odow) - Add doc_cleanup to GitHub actions (#132) (@odow) - Update tests to use Julia v1.11 (#133) (@odow) - Update codecov badge in README (#134) (@odow) - Remove explicit mention of Mo'ai (#135) (@odow) - Install torch in GitHub actions (#136) (@odow) - Add installation instructions to the README (#137) (@odow) - Fix implied variable bounds in ReLU (#138) (@odow) **Closed issues:** - MVP planning (#1) - Neural networks (#3) - Logistic layer (#16) - GLM.jl and DataFrames.jl (#27) - Add a way to override layer choices (#35) - Add GradientBoostedTrees (#43) - Add GaussianProcess (#44) - Tensorflow JSON (#65) - [breaking] return config struct from each layer (#67) - Add support for PyTorch (#68) - Support reduced-space formulation (#70) - Add a way to return predictor from extensions (#74) - Doctests fail if CondaPkg is not installed (#75) - Add OffsetScaling predictor (#87) - [GrayBox] add Hessian support (#90) - MOI Hessian evaluation is slow with reduced-space predictors (#102) - Add soft plus layer for torch (#110) - Threading and PyTorch (#116) - Tests are flakey (#127) - Add PyTorch to GitHub actions (#131)