Yiming Huang *, Beilei Cui *, Long Bai *, Ziqi Guo, Mengya Xu, Hongliang Ren
- EndoNeRF
- StereoMIS
- Pretrained checkpoints
We build the Python environment using Anaconda:
git clone https://github.com/lastbasket/Endo-4DGS.git
cd Endo-4DGS
git submodule update --init --recursive
conda create -n ED4DGS python=3.7
conda activate ED4DGS
pip install -r requirements.txt
pip install -e submodules/depth-diff-gaussian-rasterization
pip install -e submodules/simple-knn
pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118
We used two datasets for training and evaluation.
We used EndoNeRF dataset provided by Yuehao Wang.
We used StereoMIS dataset from Michel Hayoz
The data structure is as follows:
./data
├── endonerf
│ ├── cutting_tissues_twice
│ │ └── ...
│ ├── pulling_soft_tissues
│ │ └── ...
│ └── ...
└── stereomis
└── ...
How to prepare stereomis:
# 1. unzip StereoMIS_0_0_1.zip to StereoMIS_0_0_1
# 2. run the script
bash prepare_stereomis.sh
# 3. arrange the files as
./data
└── stereomis
└── split_1
│ │ └── images
│ │ └── poses_bounds.npy
│ │ └── ...
# 4. you may also visualize the trajectory using
cd stereomis
python visualize_traj.py
Download depth_anything_vits14.onnx and place in: ./submodules/depth_anything/weights/depth_anything_vits14.onnx
sh prepare_depth.sh
sh train.sh
More configurations can be found in arguments/$DATASET.py
# Render the testing result
sh render.sh
# Evaluation
sh eval.sh
Download pretrained_gaussians and unzip in the project directory:
# Render the testing result e.g. endonerf/pulling
python render.py --model_path pretrained_gaussians/endonerf/pulling --pc --skip_video --skip_train --configs arguments/endonerf.py
@inproceedings{huang2024endo,
title={Endo-4dgs: Endoscopic monocular scene reconstruction with 4d gaussian splatting},
author={Huang, Yiming and Cui, Beilei and Bai, Long and Guo, Ziqi and Xu, Mengya and Islam, Mobarakol and Ren, Hongliang},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={197--207},
year={2024},
organization={Springer}
}
Thanks the authors for their works: StereoMIS, diff-gaussian-rasterization-depth, EndoNeRF, 4DGaussians, Depth-Anything-ONNX.