-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
143 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
import tensorflow as tf | ||
import numpy as np | ||
from tensorflow.examples.tutorials.mnist import input_data | ||
import time | ||
|
||
batch_size = 125 | ||
test_size = 200 | ||
training_epochs = 20 | ||
|
||
def init_weights(shape,tag): | ||
#return tf.Variable(tf.random_normal(shape, stddev=0.01)) | ||
return tf.Variable(tf.truncated_normal(shape, stddev=0.1),name=tag) | ||
|
||
# Filter weight vectors 또는 kernel: w, w2, w3, w4, w_0 | ||
def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden): | ||
|
||
l1a = tf.nn.relu(tf.nn.conv2d(X, w, # l1a shape=(?, 28, 28, 32) | ||
strides=[1, 1, 1, 1], padding='SAME')) | ||
l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], # l1 shape=(?, 14, 14, 32) | ||
strides=[1, 2, 2, 1], padding='SAME') | ||
l1 = tf.nn.dropout(l1, p_keep_conv) | ||
|
||
|
||
l2a = tf.nn.relu(tf.nn.conv2d(l1, w2, # l2a shape=(?, 14, 14, 64) | ||
strides=[1, 1, 1, 1], padding='SAME')) | ||
l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], # l2 shape=(?, 7, 7, 64) | ||
strides=[1, 2, 2, 1], padding='SAME') | ||
l2 = tf.nn.dropout(l2, p_keep_conv) | ||
|
||
|
||
l3a = tf.nn.relu(tf.nn.conv2d(l2, w3, # l3a shape=(?, 7, 7, 128) | ||
strides=[1, 1, 1, 1], padding='SAME')) | ||
l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], # l3 shape=(?, 4, 4, 128) | ||
strides=[1, 2, 2, 1], padding='SAME') | ||
l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]]) # reshape to (?, 2048) | ||
l3 = tf.nn.dropout(l3, p_keep_conv) | ||
|
||
|
||
l4 = tf.nn.relu(tf.matmul(l3, w4)) | ||
l4 = tf.nn.dropout(l4, p_keep_hidden) | ||
|
||
pyx = tf.matmul(l4, w_o, name="y") | ||
return pyx | ||
|
||
# Read data | ||
mnist = input_data.read_data_sets("MNIST_DATA/", one_hot=True) | ||
#trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels | ||
|
||
# trx.reshape( n-inputs, image size, image size, depth ) | ||
# this variable is input in model() | ||
#trX = trX.reshape(-1, 28, 28, 1) # 28x28x1 input img | ||
#teX = teX.reshape(-1, 28, 28, 1) # 28x28x1 input img | ||
|
||
#X = tf.placeholder("float", [None, 28, 28, 1], name = 'X') | ||
X = tf.placeholder("float", shape=[None, 784], name = 'x') # none represents variable length of dimension. 784 is the dimension of MNIST data. | ||
Y = tf.placeholder("float", [None, 10], name = 'y') | ||
|
||
# reshape input data | ||
x_image = tf.reshape(X, [-1,28,28,1], name="x_image") | ||
|
||
w = init_weights([3, 3, 1, 32],"W_conv1") # 3x3x1 conv, 32 outputs | ||
w2 = init_weights([3, 3, 32, 64],"W_conv2") # 3x3x32 conv, 64 outputs | ||
w3 = init_weights([3, 3, 64, 128],"W_conv3") # 3x3x32 conv, 128 outputs | ||
w4 = init_weights([128 * 4 * 4, 625],"FC_1") # FC 128 * 4 * 4 inputs, 625 outputs | ||
w_o = init_weights([625, 10],"FC_1") # FC 625 inputs, 10 outputs (labels) | ||
|
||
p_keep_conv = tf.placeholder("float") | ||
p_keep_hidden = tf.placeholder("float") | ||
|
||
py_x = model(x_image, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden) | ||
|
||
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y),name="cross_entropy") | ||
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) | ||
predict_op = tf.argmax(py_x, 1) | ||
|
||
|
||
# create summary of parameters | ||
tf.summary.histogram('W_conv1', w) | ||
tf.summary.histogram('W_conv2', w2) | ||
tf.summary.histogram('y', py_x) | ||
tf.summary.scalar('cross_entropy', cost) | ||
# init | ||
init = tf.global_variables_initializer() | ||
|
||
# Launch the graph in a session | ||
with tf.Session() as sess: | ||
#tensorboard | ||
merged = tf.summary.merge_all() | ||
summary_writer = tf.summary.FileWriter("/tmp/mnistCNN", sess.graph) | ||
|
||
# you need to initialize all variables | ||
start_time = time.time() | ||
sess.run(init) | ||
|
||
for i in range(training_epochs): | ||
avg_cost = 0. | ||
avg_training_accuracy = 0. | ||
total_batch = int(mnist.train.num_examples/batch_size) | ||
|
||
for step in range(total_batch): | ||
batch_xs, batch_ys = mnist.train.next_batch(batch_size) | ||
#batch_xs_image = batch_xs.reshape(-1, 28, 28, 1) | ||
|
||
sess.run(train_op, feed_dict={X: batch_xs, Y: batch_ys, | ||
p_keep_conv: 0.8, p_keep_hidden: 0.5}) | ||
|
||
# Training average cost 계산 | ||
avg_cost += sess.run(cost, feed_dict={X: batch_xs, Y: batch_ys, p_keep_conv:1.0, p_keep_hidden:1.0})/total_batch | ||
|
||
avg_training_accuracy += (np.mean(np.argmax(batch_ys, axis=1) == | ||
sess.run(predict_op, feed_dict={X: batch_xs, | ||
Y: batch_ys, | ||
p_keep_conv: 1.0, | ||
p_keep_hidden: 1.0})))/total_batch | ||
|
||
|
||
print("Epoch: %d, training error: %.4f, training accuracy: %.4f"%(i,avg_cost,avg_training_accuracy)) | ||
# tensorboard를 위해서 기록한다. | ||
summary = sess.run(merged, feed_dict={X: batch_xs, Y: batch_ys, p_keep_conv:1.0, p_keep_hidden:1.0}) | ||
summary_writer.add_summary(summary , i) | ||
|
||
|
||
# testing accuracy 계산 | ||
# 인덱스를 뒤 썩어 준다. 랜덤하게 200개 추출을 위해서 | ||
test_indices = np.arange(mnist.test.labels.shape[0]) # Get A Test Batch | ||
np.random.shuffle(test_indices) | ||
test_indices = test_indices[0:test_size] # 200개만 선택한다. | ||
|
||
#teX = mnist.test.images[test_indices].reshape(-1, 28, 28, 1) # input을 2차원 image를 담은 3차원 matrix로 표현 | ||
teX = mnist.test.images[test_indices] | ||
testing_accuracy = np.mean(np.argmax(mnist.test.labels[test_indices], axis=1) == | ||
sess.run(predict_op, feed_dict={X: teX, | ||
Y: mnist.test.labels[test_indices], | ||
p_keep_conv: 1.0, | ||
p_keep_hidden: 1.0})) | ||
print("Testing Accuracy: %.4f"%(testing_accuracy)) | ||
|
||
# shuffled testing data 200개에 대해서 accuracy 1.0에 도달하면 Training을 멈춘다. | ||
if testing_accuracy == 1.0: | ||
print("Early stop..") | ||
break | ||
|
||
print("time elapsed: {:.2f}s".format(time.time() - start_time)) |