Skip to content

Commit

Permalink
add risk parity loss function & risk budgeting allocator (jankrepl#98)
Browse files Browse the repository at this point in the history
Co-authored-by: Jan Krepl <[email protected]>
  • Loading branch information
turmeric-blend and jankrepl authored Dec 19, 2020
1 parent 75d190c commit 478776c
Show file tree
Hide file tree
Showing 7 changed files with 250 additions and 9 deletions.
4 changes: 3 additions & 1 deletion deepdow/layers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,8 @@

from .collapse import (AttentionCollapse, AverageCollapse, ElementCollapse, ExponentialCollapse,
MaxCollapse, SumCollapse)
from .allocate import (AnalyticalMarkowitz, NCO, NumericalMarkowitz, Resample, SoftmaxAllocator,
from .allocate import (AnalyticalMarkowitz, NCO, NumericalMarkowitz,
NumericalRiskBudgeting, Resample, SoftmaxAllocator,
SparsemaxAllocator, WeightNorm)
from .misc import Cov2Corr, CovarianceMatrix, KMeans, MultiplyByConstant
from .transform import Conv, RNN, Warp, Zoom
Expand All @@ -20,6 +21,7 @@
'MultiplyByConstant',
'NCO',
'NumericalMarkowitz',
'NumericalRiskBudgeting',
'Resample',
'RNN',
'SoftmaxAllocator',
Expand Down
61 changes: 61 additions & 0 deletions deepdow/layers/allocate.py
Original file line number Diff line number Diff line change
Expand Up @@ -545,3 +545,64 @@ def forward(self, x):
normalized = clamped / clamped.sum()

return torch.stack(n_samples * [normalized], dim=0)


class NumericalRiskBudgeting(nn.Module):
"""Convex optimization layer stylized into portfolio optimization problem.
Parameters
----------
n_assets : int
Number of assets.
Attributes
----------
cvxpylayer : CvxpyLayer
Custom layer used by a third party package called cvxpylayers.
References
----------
[1] https://github.com/cvxgrp/cvxpylayers
[2] https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2297383
[3] https://mpra.ub.uni-muenchen.de/37749/2/MPRA_paper_37749.pdf
"""

def __init__(self, n_assets, max_weight=1):
"""Construct."""
super().__init__()
covmat_sqrt = cp.Parameter((n_assets, n_assets))
b = cp.Parameter(n_assets, nonneg=True)

w = cp.Variable(n_assets)

term_1 = 0.5 * cp.sum_squares(covmat_sqrt @ w)
term_2 = b @ cp.log(w)

objective = cp.Minimize(term_1 - term_2) # refer [2]
constraint = [cp.sum(w) == 1, w >= 0, w <= max_weight] # refer [2]

prob = cp.Problem(objective, constraint)

assert prob.is_dpp()

self.cvxpylayer = CvxpyLayer(prob, parameters=[covmat_sqrt, b], variables=[w])

def forward(self, covmat_sqrt, b):
"""Perform forward pass.
Parameters
----------
covmat : torch.Tensor
Of shape (n_samples, n_assets, n_assets) representing the covariance matrix.
b : torch.Tensor
Of shape (n_samples, n_assets) representing the budget,
risk contribution from each component (asset) is equal to the budget, refer [3]
Returns
-------
weights : torch.Tensor
Of shape (n_samples, n_assets) representing the optimal weights as determined by the convex optimizer.
"""
return self.cvxpylayer(covmat_sqrt, b)[0]
62 changes: 62 additions & 0 deletions deepdow/losses.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
All losses are designed for minimization.
"""
from types import MethodType
from .layers import CovarianceMatrix

import torch

Expand Down Expand Up @@ -1038,3 +1039,64 @@ def __repr__(self):
self.returns_channel,
self.input_type,
self.output_type)


class RiskParity(Loss):
"""Risk Parity Portfolio.
Parameters
----------
returns_channel : int
Which channel of the `y` target represents returns.
Attributes
----------
covariance_layer : deepdow.layers.CoverianceMatrix
Covarioance matrix layer.
References
----------
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2297383
"""

def __init__(self, returns_channel=0):
self.returns_channel = returns_channel
self.covariance_layer = CovarianceMatrix(sqrt=False)

def __call__(self, weights, y):
"""Compute loss.
Parameters
----------
weights : torch.Tensor
Tensor of shape `(n_samples, n_assets)` representing the predicted
weights by our portfolio optimizer.
y : torch.Tensor
Tensor of shape `(n_samples, n_channels, horizon, n_assets)`
representing the evolution over the next `horizon` timesteps.
Returns
-------
torch.Tensor
Tensor of shape `(n_samples,)` representing the per sample risk parity.
"""
n_assets = weights.shape[-1]
covar = self.covariance_layer(y[:, self.returns_channel, ...]) # (n_samples, n_assets, n_assets)

weights = weights.unsqueeze(dim=1)
volatility = torch.sqrt(torch.matmul(weights,
torch.matmul(covar,
weights.permute((0, 2, 1))))) # (n_samples, 1, 1)
c = (covar * weights) / volatility # (n_samples, n_assets, n_assets)
risk = volatility / n_assets # (n_samples, 1, 1)

budget = torch.matmul(weights, c) # (n_samples, n_assets, n_assets)
rp = torch.sum((risk - budget)**2, dim=-1).view(-1) # (n_samples,)

return rp

def __repr__(self):
"""Generate representation string."""
return "{}(returns_channel={})".format(self.__class__.__name__,
self.returns_channel)
31 changes: 30 additions & 1 deletion docs/source/layers.rst
Original file line number Diff line number Diff line change
Expand Up @@ -262,6 +262,32 @@ tensors (batched along the sample dimension):



.. warning::

The major downside of using this allocator is a significant decrease in speed.

NumericalRiskBudgeting
**********************
Proposed in [Spinu2013]_.

.. math::
\begin{aligned}
\min_{\textbf{w}} \quad & \frac{1}{2}{\textbf{w}}^{T} \boldsymbol{\Sigma} \textbf{w} - \sum_{i=1}^{N} b_i \log(w_i) \\
\textrm{s.t.} \quad & \sum_{i=1}^{N}w_i = 1 \\
\quad & w_i >= 0, i \in \{1,...,N\}\\
\quad & w_i <= w_{\text{max}}, i \in \{1,...,N\}\\
\end{aligned}
where the :math:`b_i, i=1,..,N` are the risk budgets. The user needs to provide
:code:`n_assets` (:math:`N` in the above formulation) and :code:`max_weight`
(:math:`w_{\text{max}}`) when constructing this layer. To perform a forward pass one passes the following
tensors (batched along the sample dimension):

- :code:`covmat_sqrt` - Corresponds to a (matrix) square root of the covariance matrix :math:`\boldsymbol{\Sigma}`
- :code:`b` - Risk budgets


.. warning::

The major downside of using this allocator is a significant decrease in speed.
Expand Down Expand Up @@ -494,6 +520,9 @@ References
.. [Prado2019]
Lopez de Prado, M. (2019). A Robust Estimator of the Efficient Frontier. Available at SSRN 3469961.
.. [Spinu2013]
Spinu, Florin, An Algorithm for Computing Risk Parity Weights (July 30, 2013). Available at SSRN: https://ssrn.com/abstract=2297383 or http://dx.doi.org/10.2139/ssrn.2297383
.. [Jiang2017]
Jiang, Zhengyao, and Jinjun Liang. "Cryptocurrency portfolio management with deep reinforcement learning." 2017 Intelligent Systems Conference (IntelliSys). IEEE, 2017
Expand Down Expand Up @@ -522,4 +551,4 @@ References
Bodnar, Taras, Nestor Parolya, and Wolfgang Schmid. "On the equivalence of quadratic optimization problems commonly used in portfolio theory." European Journal of Operational Research 229.3 (2013): 637-644.
.. [Jaderberg2015]
Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial transformer networks." Advances in neural information processing systems. 2015.
Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial transformer networks." Advances in neural information processing systems. 2015.
10 changes: 10 additions & 0 deletions docs/source/losses.rst
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,16 @@ The **negative** of mean portfolio returns over the :code:`horizon` time steps.
{\mu}^{\textbf{w}} = \frac{\sum_{i}^{\text{horizon}} r^{\textbf{w}}_{i} }{\text{horizon}}
RiskParity
**********

.. math::
\sum_{i=1}^{N}\Big(\frac{\sigma}{N} - w_i \big(\frac{\Sigma\textbf{w}}{\sigma}\big)_i\Big) ^ 2
where :math:`\sigma=\sqrt{\textbf{w}^T\Sigma\textbf{w}}` and :math:`\Sigma` is
the covariance matrix of asset returns.

Quantile (Value at Risk)
************************
The **negative** of the :code:`p`-quantile of portfolio returns. Note that in the background it solved via
Expand Down
33 changes: 32 additions & 1 deletion tests/test_layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@
from deepdow.layers import (AverageCollapse, AttentionCollapse, ElementCollapse,
ExponentialCollapse, MaxCollapse,
SumCollapse)
from deepdow.layers import (AnalyticalMarkowitz, NCO, NumericalMarkowitz, Resample,
from deepdow.layers import (AnalyticalMarkowitz, NCO, NumericalMarkowitz,
NumericalRiskBudgeting, Resample,
SoftmaxAllocator, SparsemaxAllocator, WeightNorm)
from deepdow.layers import Cov2Corr, CovarianceMatrix, KMeans, MultiplyByConstant
from deepdow.layers import Conv, RNN, Warp, Zoom
Expand Down Expand Up @@ -326,6 +327,9 @@ def test_basic(self, Xy_dummy):
weights = popt(rets, covmat_sqrt, gamma, alpha)

assert weights.shape == (n_samples, n_assets)
assert torch.allclose(weights.sum(dim=-1), torch.ones(n_samples,
device=device,
dtype=dtype))
assert weights.dtype == X.dtype
assert weights.device == X.device

Expand Down Expand Up @@ -787,3 +791,30 @@ def test_equality_with_warp(self):
x_warped = layer_warp(X, tform)

assert torch.allclose(x_zoomed, x_warped)


class TestNumericalRiskBudgeting:
def test_basic(self, Xy_dummy):
X, _, _, _ = Xy_dummy
device, dtype = X.device, X.dtype
n_samples, n_channels, lookback, n_assets = X.shape

popt = NumericalRiskBudgeting(n_assets)

covmat_sqrt__ = torch.rand((n_assets, n_assets)).to(device=X.device, dtype=X.dtype)
covmat_sqrt_ = covmat_sqrt__ @ covmat_sqrt__
covmat_sqrt_.add_(torch.eye(n_assets, dtype=dtype, device=device))

covmat_sqrt = torch.stack(n_samples * [covmat_sqrt_])

budgets = torch.rand((n_samples, n_assets), dtype=dtype, device=device)
budgets /= budgets.sum(dim=-1, keepdim=True)

weights = popt(covmat_sqrt, budgets)

assert weights.shape == (n_samples, n_assets)
assert torch.allclose(weights.sum(dim=-1), torch.ones(n_samples,
device=device,
dtype=dtype))
assert weights.dtype == X.dtype
assert weights.device == X.device
58 changes: 52 additions & 6 deletions tests/test_losses.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,18 @@
import pytest
import torch

from deepdow.losses import (Alpha, CumulativeReturn, LargestWeight, Loss, MaximumDrawdown, MeanReturns, Quantile,
SharpeRatio, Softmax, SortinoRatio, SquaredWeights, StandardDeviation, TargetMeanReturn,
TargetStandardDeviation, WorstReturn, log2simple, portfolio_returns,
portfolio_cumulative_returns, simple2log)
from deepdow.losses import (Alpha, CumulativeReturn, LargestWeight, Loss,
MaximumDrawdown, MeanReturns, RiskParity, Quantile,
SharpeRatio, Softmax, SortinoRatio, SquaredWeights,
StandardDeviation, TargetMeanReturn,
TargetStandardDeviation, WorstReturn, log2simple,
portfolio_returns, portfolio_cumulative_returns,
simple2log)

ALL_LOSSES = [Alpha, CumulativeReturn, LargestWeight, MaximumDrawdown, MeanReturns, Quantile, SharpeRatio, Softmax,
SortinoRatio, SquaredWeights, StandardDeviation, TargetMeanReturn, TargetStandardDeviation, WorstReturn]
ALL_LOSSES = [Alpha, CumulativeReturn, LargestWeight, MaximumDrawdown,
MeanReturns, RiskParity, Quantile, SharpeRatio, Softmax,
SortinoRatio, SquaredWeights, StandardDeviation,
TargetMeanReturn, TargetStandardDeviation, WorstReturn]


class TestHelpers:
Expand Down Expand Up @@ -351,3 +356,44 @@ def test_no_drawdowns(self):
loss = loss_inst(w, y)[0]

assert loss == 0


class TestRiskParity:
@staticmethod
def stupid_compute(w, y):
"""Straightforward implementation with list comprehensions."""
from deepdow.layers import CovarianceMatrix

n_samples, n_assets = w.shape
covar = CovarianceMatrix(sqrt=False)(y[:, 0, ...]) # returns_channel=0

var = torch.cat([(w[[i]] @ covar[i]) @ w[[i]].permute(1, 0) for i in range(n_samples)], dim=0)
vol = torch.sqrt(var)

lhs = vol / n_assets
rhs = torch.cat([(1 / vol[i]) * w[[i]] * (w[[i]] @ covar[i]) for i in range(n_samples)], dim=0)

res = torch.tensor([((lhs[i] - rhs[i]) ** 2).sum() for i in range(n_samples)])

return res

def test_correct_fpass(self):
device, dtype = torch.device("cpu"), torch.float32
n_samples, n_channels, horizon, n_assets = 2, 3, 10, 5

# Generate weights and targets
torch.manual_seed(2)
y = torch.rand((n_samples, n_channels, horizon, n_assets),
dtype=dtype,
device=device)

weights = torch.rand((n_samples, n_assets),
dtype=dtype,
device=device)

weights /= weights.sum(dim=-1, keepdim=True)

res_stupid = self.stupid_compute(weights, y)
res_actual = RiskParity()(weights, y)

assert torch.allclose(res_stupid, res_actual)

0 comments on commit 478776c

Please sign in to comment.