forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare.sh
137 lines (127 loc) · 3.71 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
MODE=$2
dataline=$(cat ${FILENAME})
# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser_key(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[0]}
echo ${tmp}
}
function func_parser_value(){
strs=$1
IFS=":"
array=(${strs})
if [ ${#array[*]} = 2 ]; then
echo ${array[1]}
else
IFS="|"
tmp="${array[1]}:${array[2]}"
echo ${tmp}
fi
}
model_name=$(func_parser_value "${lines[1]}")
model_url_value=$(func_parser_value "${lines[35]}")
model_url_key=$(func_parser_key "${lines[35]}")
if [ ${MODE} = "lite_train_infer" ] || [ ${MODE} = "whole_infer" ];then
# pretrain lite train data
cd dataset
rm -rf ILSVRC2012
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_little_train.tar
tar xf whole_chain_little_train.tar
ln -s whole_chain_little_train ILSVRC2012
cd ILSVRC2012
mv train.txt train_list.txt
mv val.txt val_list.txt
if [ ${MODE} = "lite_train_infer" ];then
cp -r train/* val/
fi
cd ../../
elif [ ${MODE} = "infer" ] || [ ${MODE} = "cpp_infer" ];then
# download data
cd dataset
rm -rf ILSVRC2012
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar
tar xf whole_chain_infer.tar
ln -s whole_chain_infer ILSVRC2012
cd ILSVRC2012
mv val.txt val_list.txt
ln -s val_list.txt train_list.txt
cd ../../
# download inference or pretrained model
eval "wget -nc $model_url_value"
if [[ $model_url_key == *inference* ]]; then
rm -rf inference
tar xf "${model_name}_inference.tar"
fi
elif [ ${MODE} = "whole_train_infer" ];then
cd dataset
rm -rf ILSVRC2012
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_CIFAR100.tar
tar xf whole_chain_CIFAR100.tar
ln -s whole_chain_CIFAR100 ILSVRC2012
cd ILSVRC2012
mv train.txt train_list.txt
mv val.txt val_list.txt
cd ../../
fi
if [ ${MODE} = "cpp_infer" ];then
cd deploy/cpp
echo "################### build opencv ###################"
rm -rf 3.4.7.tar.gz opencv-3.4.7/
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xf 3.4.7.tar.gz
install_path=$(pwd)/opencv-3.4.7/opencv3
cd opencv-3.4.7/
rm -rf build
mkdir build
cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=${install_path} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_IPP=OFF \
-DBUILD_IPP_IW=OFF \
-DWITH_LAPACK=OFF \
-DWITH_EIGEN=OFF \
-DCMAKE_INSTALL_LIBDIR=lib64 \
-DWITH_ZLIB=ON \
-DBUILD_ZLIB=ON \
-DWITH_JPEG=ON \
-DBUILD_JPEG=ON \
-DWITH_PNG=ON \
-DBUILD_PNG=ON \
-DWITH_TIFF=ON \
-DBUILD_TIFF=ON
make -j
make install
cd ../../
echo "################### build opencv finished ###################"
echo "################### build PaddleClas demo ####################"
OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/
LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/
CUDA_LIB_DIR=$(dirname `find /usr -name libcudart.so`)
CUDNN_LIB_DIR=$(dirname `find /usr -name libcudnn.so`)
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DDEMO_NAME=clas_system \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DWITH_TENSORRT=OFF \
-DTENSORRT_DIR=${TENSORRT_DIR} \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
make -j
echo "################### build PaddleClas demo finished ###################"
fi