Skip to content

Latest commit

 

History

History
 
 

tests

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

从训练到推理部署工具链测试方法介绍

test.sh和config文件夹下的txt文件配合使用,完成Clas模型从训练到预测的流程测试。

安装依赖

  • 安装PaddlePaddle >= 2.0
  • 安装PaddleClass依赖
    pip3 install  -r ../requirements.txt
    
  • 安装autolog
    git clone https://github.com/LDOUBLEV/AutoLog
    cd AutoLog
    pip3 install -r requirements.txt
    python3 setup.py bdist_wheel
    pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
    cd ../
    

目录介绍

tests/
├── config                        # 测试模型的参数配置文件
|   |--- *.txt
└── prepare.sh                    # 完成test.sh运行所需要的数据和模型下载
└── test.sh                       # 测试主程序

使用方法

test.sh包四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:

  • 模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
bash tests/prepare.sh ./tests/config/ResNet50_vd.txt 'lite_train_infer'
bash tests/test.sh ./tests/config/ResNet50_vd.txt 'lite_train_infer'
  • 模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
bash tests/prepare.sh ./tests/config/ResNet50_vd.txt 'whole_infer'
bash tests/test.sh ./tests/config/ResNet50_vd.txt 'whole_infer'
  • 模式3:infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
bash tests/prepare.sh ./tests/config/ResNet50_vd.txt 'infer'
# 用法1:
bash tests/test.sh ./tests/config/ResNet50_vd.txt 'infer'

需注意的是,模型的离线量化需使用infer模式进行测试

  • 模式4:whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
bash tests/prepare.sh ./tests/config/ResNet50_vd.txt 'whole_train_infer'
bash tests/test.sh ./tests/config/ResNet50_vd.txt 'whole_train_infer'
  • 模式5:cpp_infer , CE: 验证inference model的c++预测是否走通;
bash tests/prepare.sh ./tests/config/ResNet50_vd.txt 'cpp_infer'
bash tests/test.sh ./tests/config/ResNet50_vd.txt 'cpp_infer'

日志输出

最终在tests/output目录下生成.log后缀的日志文件