forked from koalo/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
RSA: Implement signature verification algorithm [PKCS#1 / RFC3447]
Implement RSA public key cryptography [PKCS#1 / RFC3447]. At this time, only the signature verification algorithm is supported. This uses the asymmetric public key subtype to hold its key data. Signed-off-by: David Howells <[email protected]> Signed-off-by: Rusty Russell <[email protected]>
- Loading branch information
1 parent
12f008b
commit 612e0fe
Showing
4 changed files
with
279 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
/* RSA asymmetric public-key algorithm [RFC3447] | ||
* | ||
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. | ||
* Written by David Howells ([email protected]) | ||
* | ||
* This program is free software; you can redistribute it and/or | ||
* modify it under the terms of the GNU General Public Licence | ||
* as published by the Free Software Foundation; either version | ||
* 2 of the Licence, or (at your option) any later version. | ||
*/ | ||
|
||
#define pr_fmt(fmt) "RSA: "fmt | ||
#include <linux/module.h> | ||
#include <linux/kernel.h> | ||
#include <linux/slab.h> | ||
#include "public_key.h" | ||
|
||
MODULE_LICENSE("GPL"); | ||
MODULE_DESCRIPTION("RSA Public Key Algorithm"); | ||
|
||
#define kenter(FMT, ...) \ | ||
pr_devel("==> %s("FMT")\n", __func__, ##__VA_ARGS__) | ||
#define kleave(FMT, ...) \ | ||
pr_devel("<== %s()"FMT"\n", __func__, ##__VA_ARGS__) | ||
|
||
/* | ||
* Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. | ||
*/ | ||
static const u8 RSA_digest_info_MD5[] = { | ||
0x30, 0x20, 0x30, 0x0C, 0x06, 0x08, | ||
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* OID */ | ||
0x05, 0x00, 0x04, 0x10 | ||
}; | ||
|
||
static const u8 RSA_digest_info_SHA1[] = { | ||
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, | ||
0x2B, 0x0E, 0x03, 0x02, 0x1A, | ||
0x05, 0x00, 0x04, 0x14 | ||
}; | ||
|
||
static const u8 RSA_digest_info_RIPE_MD_160[] = { | ||
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, | ||
0x2B, 0x24, 0x03, 0x02, 0x01, | ||
0x05, 0x00, 0x04, 0x14 | ||
}; | ||
|
||
static const u8 RSA_digest_info_SHA224[] = { | ||
0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, | ||
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, | ||
0x05, 0x00, 0x04, 0x1C | ||
}; | ||
|
||
static const u8 RSA_digest_info_SHA256[] = { | ||
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, | ||
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, | ||
0x05, 0x00, 0x04, 0x20 | ||
}; | ||
|
||
static const u8 RSA_digest_info_SHA384[] = { | ||
0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, | ||
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, | ||
0x05, 0x00, 0x04, 0x30 | ||
}; | ||
|
||
static const u8 RSA_digest_info_SHA512[] = { | ||
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, | ||
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, | ||
0x05, 0x00, 0x04, 0x40 | ||
}; | ||
|
||
static const struct { | ||
const u8 *data; | ||
size_t size; | ||
} RSA_ASN1_templates[PKEY_HASH__LAST] = { | ||
#define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) } | ||
[PKEY_HASH_MD5] = _(MD5), | ||
[PKEY_HASH_SHA1] = _(SHA1), | ||
[PKEY_HASH_RIPE_MD_160] = _(RIPE_MD_160), | ||
[PKEY_HASH_SHA256] = _(SHA256), | ||
[PKEY_HASH_SHA384] = _(SHA384), | ||
[PKEY_HASH_SHA512] = _(SHA512), | ||
[PKEY_HASH_SHA224] = _(SHA224), | ||
#undef _ | ||
}; | ||
|
||
/* | ||
* RSAVP1() function [RFC3447 sec 5.2.2] | ||
*/ | ||
static int RSAVP1(const struct public_key *key, MPI s, MPI *_m) | ||
{ | ||
MPI m; | ||
int ret; | ||
|
||
/* (1) Validate 0 <= s < n */ | ||
if (mpi_cmp_ui(s, 0) < 0) { | ||
kleave(" = -EBADMSG [s < 0]"); | ||
return -EBADMSG; | ||
} | ||
if (mpi_cmp(s, key->rsa.n) >= 0) { | ||
kleave(" = -EBADMSG [s >= n]"); | ||
return -EBADMSG; | ||
} | ||
|
||
m = mpi_alloc(0); | ||
if (!m) | ||
return -ENOMEM; | ||
|
||
/* (2) m = s^e mod n */ | ||
ret = mpi_powm(m, s, key->rsa.e, key->rsa.n); | ||
if (ret < 0) { | ||
mpi_free(m); | ||
return ret; | ||
} | ||
|
||
*_m = m; | ||
return 0; | ||
} | ||
|
||
/* | ||
* Integer to Octet String conversion [RFC3447 sec 4.1] | ||
*/ | ||
static int RSA_I2OSP(MPI x, size_t xLen, u8 **_X) | ||
{ | ||
unsigned X_size, x_size; | ||
int X_sign; | ||
u8 *X; | ||
|
||
/* Make sure the string is the right length. The number should begin | ||
* with { 0x00, 0x01, ... } so we have to account for 15 leading zero | ||
* bits not being reported by MPI. | ||
*/ | ||
x_size = mpi_get_nbits(x); | ||
pr_devel("size(x)=%u xLen*8=%zu\n", x_size, xLen * 8); | ||
if (x_size != xLen * 8 - 15) | ||
return -ERANGE; | ||
|
||
X = mpi_get_buffer(x, &X_size, &X_sign); | ||
if (!X) | ||
return -ENOMEM; | ||
if (X_sign < 0) { | ||
kfree(X); | ||
return -EBADMSG; | ||
} | ||
if (X_size != xLen - 1) { | ||
kfree(X); | ||
return -EBADMSG; | ||
} | ||
|
||
*_X = X; | ||
return 0; | ||
} | ||
|
||
/* | ||
* Perform the RSA signature verification. | ||
* @H: Value of hash of data and metadata | ||
* @EM: The computed signature value | ||
* @k: The size of EM (EM[0] is an invalid location but should hold 0x00) | ||
* @hash_size: The size of H | ||
* @asn1_template: The DigestInfo ASN.1 template | ||
* @asn1_size: Size of asm1_template[] | ||
*/ | ||
static int RSA_verify(const u8 *H, const u8 *EM, size_t k, size_t hash_size, | ||
const u8 *asn1_template, size_t asn1_size) | ||
{ | ||
unsigned PS_end, T_offset, i; | ||
|
||
kenter(",,%zu,%zu,%zu", k, hash_size, asn1_size); | ||
|
||
if (k < 2 + 1 + asn1_size + hash_size) | ||
return -EBADMSG; | ||
|
||
/* Decode the EMSA-PKCS1-v1_5 */ | ||
if (EM[1] != 0x01) { | ||
kleave(" = -EBADMSG [EM[1] == %02u]", EM[1]); | ||
return -EBADMSG; | ||
} | ||
|
||
T_offset = k - (asn1_size + hash_size); | ||
PS_end = T_offset - 1; | ||
if (EM[PS_end] != 0x00) { | ||
kleave(" = -EBADMSG [EM[T-1] == %02u]", EM[PS_end]); | ||
return -EBADMSG; | ||
} | ||
|
||
for (i = 2; i < PS_end; i++) { | ||
if (EM[i] != 0xff) { | ||
kleave(" = -EBADMSG [EM[PS%x] == %02u]", i - 2, EM[i]); | ||
return -EBADMSG; | ||
} | ||
} | ||
|
||
if (memcmp(asn1_template, EM + T_offset, asn1_size) != 0) { | ||
kleave(" = -EBADMSG [EM[T] ASN.1 mismatch]"); | ||
return -EBADMSG; | ||
} | ||
|
||
if (memcmp(H, EM + T_offset + asn1_size, hash_size) != 0) { | ||
kleave(" = -EKEYREJECTED [EM[T] hash mismatch]"); | ||
return -EKEYREJECTED; | ||
} | ||
|
||
kleave(" = 0"); | ||
return 0; | ||
} | ||
|
||
/* | ||
* Perform the verification step [RFC3447 sec 8.2.2]. | ||
*/ | ||
static int RSA_verify_signature(const struct public_key *key, | ||
const struct public_key_signature *sig) | ||
{ | ||
size_t tsize; | ||
int ret; | ||
|
||
/* Variables as per RFC3447 sec 8.2.2 */ | ||
const u8 *H = sig->digest; | ||
u8 *EM = NULL; | ||
MPI m = NULL; | ||
size_t k; | ||
|
||
kenter(""); | ||
|
||
if (!RSA_ASN1_templates[sig->pkey_hash_algo].data) | ||
return -ENOTSUPP; | ||
|
||
/* (1) Check the signature size against the public key modulus size */ | ||
k = (mpi_get_nbits(key->rsa.n) + 7) / 8; | ||
|
||
tsize = (mpi_get_nbits(sig->rsa.s) + 7) / 8; | ||
pr_devel("step 1: k=%zu size(S)=%zu\n", k, tsize); | ||
if (tsize != k) { | ||
ret = -EBADMSG; | ||
goto error; | ||
} | ||
|
||
/* (2b) Apply the RSAVP1 verification primitive to the public key */ | ||
ret = RSAVP1(key, sig->rsa.s, &m); | ||
if (ret < 0) | ||
goto error; | ||
|
||
/* (2c) Convert the message representative (m) to an encoded message | ||
* (EM) of length k octets. | ||
* | ||
* NOTE! The leading zero byte is suppressed by MPI, so we pass a | ||
* pointer to the _preceding_ byte to RSA_verify()! | ||
*/ | ||
ret = RSA_I2OSP(m, k, &EM); | ||
if (ret < 0) | ||
goto error; | ||
|
||
ret = RSA_verify(H, EM - 1, k, sig->digest_size, | ||
RSA_ASN1_templates[sig->pkey_hash_algo].data, | ||
RSA_ASN1_templates[sig->pkey_hash_algo].size); | ||
|
||
error: | ||
kfree(EM); | ||
mpi_free(m); | ||
kleave(" = %d", ret); | ||
return ret; | ||
} | ||
|
||
const struct public_key_algorithm RSA_public_key_algorithm = { | ||
.name = "RSA", | ||
.n_pub_mpi = 2, | ||
.n_sec_mpi = 3, | ||
.n_sig_mpi = 1, | ||
.verify_signature = RSA_verify_signature, | ||
}; | ||
EXPORT_SYMBOL_GPL(RSA_public_key_algorithm); |