A Pytorch-based toolbox for semi-supervised learning. This is also the official implementation for FlexMatch: boosting semi-supervised learning using curriculum pseudo labeling published at NeurIPS 2021. [arXiv] [Zhihu article] [Video]
15/02/2021
- The logs and model weights are shared! We notice that some model weights are missing. We will try to upload the missing model weights in the future.
- The results of BestAcc have been updated! I use single P100 for CIFAR-10 and SVHN, single P40 for STL-10, signle V100-32G for CIFAR-100.
TorchSSL is an all-in-one toolkit based on PyTorch for semi-supervised learning (SSL). Currently, we implmented 9 popular SSL algorithms to enable fair comparison and boost the development of SSL algorithms.
Supported algorithms: In addition to fully-supervised (as a baseline), TorchSSL supports the following popular algorithms:
- PiModel (NeurIPS 2015) [1]
- MeanTeacher (NeurIPS 2017) [2]
- PseudoLabel (ICML 2013) [3]
- VAT (Virtual adversarial training, TPAMI 2018) [4]
- MixMatch (NeurIPS 2019) [5]
- UDA (Unsupervised data augmentation, NeurIPS 2020) [6]
- ReMixMatch (ICLR 2019) [7]
- FixMatch (NeurIPS 2020) [8]
- FlexMatch (NeurIPS 2021) [9]
Besides, we implement our Curriculum Pseudo Labeling (CPL) method for Pseudo-Label (Flex-Pseudo-Label) and UDA (Flex-UDA).
Supported datasets: TorchSSL currently supports 5 popular datasets in SSL research:
- CIFAR-10
- CIFAR-100
- STL-10
- SVHN
- ImageNet
The results are best accuracies with standard errors. In the results, "40", "250", "1000" etc. under the dataset row denote different numbers of labeled samples (e.g., "40" in CIFAR-10 means that there are only 4 labeled samples for each class). We use random seed 0,1,2 for all experiments. All configs are included under the config/
folder. You can directly cite these results in your own research.
CIFAR-10 | CIFAR100 | ||||||
---|---|---|---|---|---|---|---|
40 | 250 | 4000 | 400 | 2500 | 10000 | ||
FullySupervised | 95.38±0.05 | 95.39±0.04 | 95.38±0.05 | 80.7±0.09 | 80.7±0.09 | 80.73±0.05 | |
PiModel [1] | 25.66±1.76 | 53.76±1.29 | 86.87±0.59 | 13.04±0.8 | 41.2±0.66 | 63.35±0.0 | |
PseudoLabel [3] | 25.39±0.26 | 53.51±2.2 | 84.92±0.19 | 12.55±0.85 | 42.26±0.28 | 63.45±0.24 | |
PseudoLabel_Flex [9] | 26.26±1.96 | 53.86±1.81 | 85.25±0.19 | 14.28±0.46 | 43.88±0.51 | 64.4±0.15 | |
MeanTeacher [2] | 29.91±1.6 | 62.54±3.3 | 91.9±0.21 | 18.89±1.44 | 54.83±1.06 | 68.25±0.23 | |
VAT [4] | 25.34±2.12 | 58.97±1.79 | 89.49±0.12 | 14.8±1.4 | 53.16±0.79 | 67.86±0.19 | |
MixMatch [5] | 63.81±6.48 | 86.37±0.59 | 93.34±0.26 | 32.41±0.66 | 60.24±0.48 | 72.22±0.29 | |
ReMixMatch [7] | 90.12±1.03 | 93.7±0.05 | 95.16±0.01 | 57.25±1.05 | 73.97±0.35 | 79.98±0.27 | |
UDA [6] | 89.38±3.75 | 94.84±0.06 | 95.71±0.07 | 53.61±1.59 | 72.27±0.21 | 77.51±0.23 | |
UDA_Flex [9] | 94.56±0.52 | 94.98±0.07 | 95.76±0.06 | 54.83±1.88 | 72.92±0.15 | 78.09±0.1 | |
FixMatch [8] | 92.53±0.28 | 95.14±0.05 | 95.79±0.08 | 53.58±0.82 | 71.97±0.16 | 77.8±0.12 | |
FlexMatch [9] | 95.03±0.06 | 95.02±0.09 | 95.81±0.01 | 60.06±1.62 | 73.51±0.2 | 78.1±0.15 |
STL-10 | SVHN | ||||||
---|---|---|---|---|---|---|---|
40 | 250 | 1000 | 40 | 250 | 1000 | ||
FullySupervised | None | None | None | 97.87±0.02 | 97.87±0.01 | 97.86±0.01 | |
PiModel [1] | 25.69±0.85 | 44.87±1.5 | 67.22±0.4 | 32.52±0.95 | 86.7±1.12 | 92.84±0.11 | |
PseudoLabel [3] | 25.32±0.99 | 44.55±2.43 | 67.36±0.71 | 35.39±5.6 | 84.41±0.95 | 90.6±0.32 | |
PseudoLabel_Flex [9] | 26.58±2.19 | 47.94±2.5 | 67.95±0.37 | 36.79±3.64 | 79.58±2.11 | 87.95±0.54 | |
MeanTeacher [2] | 28.28±1.45 | 43.51±2.75 | 66.1±1.37 | 63.91±3.98 | 96.55±0.03 | 96.73±0.05 | |
VAT [4] | 25.26±0.38 | 43.58±1.97 | 62.05±1.12 | 25.25±3.38 | 95.67±0.12 | 95.89±0.2 | |
MixMatch [5] | 45.07±0.96 | 65.48±0.32 | 78.3±0.68 | 69.4±8.39 | 95.44±0.32 | 96.31±0.37 | |
ReMixMatch [7] | 67.88±6.24 | 87.51±1.28 | 93.26±0.14 | 75.96±9.13 | 93.64±0.22 | 94.84±0.31 | |
UDA [6] | 62.58±8.44 | 90.28±1.15 | 93.36±0.17 | 94.88±4.27 | 98.08±0.05 | 98.11±0.01 | |
UDA_Flex [9] | 70.47±2.1 | 90.97±0.45 | 93.9±0.25 | 96.58±1.51 | 97.34±0.83 | 97.98±0.05 | |
FixMatch [8] | 64.03±4.14 | 90.19±1.04 | 93.75±0.33 | 96.19±1.18 | 97.98±0.02 | 98.04±0.03 | |
FlexMatch [9] | 70.85±4.16 | 91.77±0.39 | 94.23±0.18 | 91.81±3.2 | 93.41±2.29 | 93.28±0.3 |
You can download the shared logs and weights here.
https://1drv.ms/u/s!AlpW9hcyb0KvmyCfsCjGvhDXG5Nb?e=Xc6amH
Before running or modifing the code, you need to:
- Clone this repo to your machine.
- Make sure Anaconda or Miniconda is installed.
- Run
conda env create -f environment.yml
for environment initialization.
It is convenient to perform experiment with TorchSSL. For example, if you want to run FlexMatch algorithm:
- Modify the config file in
config/flexmatch/flexmatch.yaml
as you need - Run
python flexmatch.py --c config/flexmatch/flexmatch.yaml
If you want to write your own algorithm, please follow the following steps:
- Create a directory for your algorithm, e.g.,
SSL
, write your own model fileSSl/SSL.py
in it. - Write the training file in
SSL.py
- Write the config file in
config/SSL/SSL.yaml
If you think this toolkit or the results are helpful to you and your research, please cite our paper:
@article{zhang2021flexmatch},
title={FlexMatch: Boosting Semi-supervised Learning with Curriculum Pseudo Labeling},
author={Zhang, Bowen and Wang, Yidong and Hou, Wenxin and Wu, Hao and Wang, Jindong and Okumura, Manabu and Shinozaki, Takahiro},
booktitle={Neural Information Processing Systems (NeurIPS)},
year={2021}
}
Yidong Wang1, Hao Chen5, Yue Fan6, Hao Wu2, Bowen Zhang1, Wenxin Hou1,3, Yuhao Chen4, Jindong Wang3
Shinozaki Lab1 http://www.ts.ip.titech.ac.jp/
Okumura Lab2 http://lr-www.pi.titech.ac.jp/wp/
Microsoft Research Asia3
Megvii4
Carnegie Mellon Univerisity5
Max-Planck-Institut für Informatik6
- You are welcome to open an issue on bugs, questions, and suggestions.
- If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]; [email protected]) for more information. We plan to add more SSL algorithms and expand TorchSSL from CV to NLP and Speech.
For ImageNet datasets: Please download the ImageNet 2014 dataset (unchanged from 2012) from the official site (link: https://image-net.org/challenges/LSVRC/2012/2012-downloads.php)
Extract the train and the val set into subfolders (the test set is not used), and put them under train/
and val/
respectively. Each subfolder will represent a class.
Note: the offical val set is not zipped into subfolders by classes, you may want to use: https://github.com/jiweibo/ImageNet/blob/master/valprep.sh, which is a nice script for preparing the file structure.
[1] Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko. Semi-supervised learning with ladder networks. InNeurIPS, pages 3546–3554, 2015.
[2] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averagedconsistency targets improve semi-supervised deep learning results. InNeurIPS, pages 1195–1204, 2017.
[3] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning methodfor deep neural networks. InWorkshop on challenges in representation learning, ICML,volume 3, 2013.
[4] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:a regularization method for supervised and semi-supervised learning.IEEE TPAMI, 41(8):1979–1993, 2018.
[5] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and ColinRaffel. Mixmatch: A holistic approach to semi-supervised learning.NeurIPS, page 5050–5060,2019.
[6] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmen-tation for consistency training.NeurIPS, 33, 2020.
[7] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,and Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching andaugmentation anchoring. InICLR, 2019.
[8] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence.NeurIPS, 33, 2020.
[9] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao wu, Jindong Wang, Okumura Manabu, and Shinozaki Takahiro. FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling. NeurIPS, 2021.