forked from xmu-xiaoma666/External-Attention-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
fc5d41c
commit fda1217
Showing
4 changed files
with
125 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,10 +1,10 @@ | ||
from model.backbone.ConvMixer import * | ||
from model.conv.DynamicConv import * | ||
import torch | ||
from torch import nn | ||
from torch.nn import functional as F | ||
|
||
if __name__ == '__main__': | ||
x=torch.randn(1,3,224,224) | ||
convmixer=ConvMixer(dim=512,depth=12) | ||
out=convmixer(x) | ||
print(out.shape) #[1, 1000] | ||
input=torch.randn(2,32,64,64) | ||
m=DynamicConv(in_planes=32,out_planes=64,kernel_size=3,stride=1,padding=1,bias=False) | ||
out=m(input) | ||
print(out.shape) # 2,32,64,64 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
import torch | ||
from torch import nn | ||
from torch.nn import functional as F | ||
|
||
class Attention(nn.Module): | ||
def __init__(self,in_planes,ratio,K,temprature=30,init_weight=True): | ||
super().__init__() | ||
self.avgpool=nn.AdaptiveAvgPool2d(1) | ||
self.temprature=temprature | ||
assert in_planes>ratio | ||
hidden_planes=in_planes//ratio | ||
self.net=nn.Sequential( | ||
nn.Conv2d(in_planes,hidden_planes,kernel_size=1,bias=False), | ||
nn.ReLU(), | ||
nn.Conv2d(hidden_planes,K,kernel_size=1,bias=False) | ||
) | ||
|
||
if(init_weight): | ||
self._initialize_weights() | ||
|
||
def update_temprature(self): | ||
if(self.temprature>1): | ||
self.temprature-=1 | ||
|
||
def _initialize_weights(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||
if m.bias is not None: | ||
nn.init.constant_(m.bias, 0) | ||
if isinstance(m ,nn.BatchNorm2d): | ||
nn.init.constant_(m.weight, 1) | ||
nn.init.constant_(m.bias, 0) | ||
|
||
def forward(self,x): | ||
att=self.avgpool(x) #bs,dim,1,1 | ||
att=self.net(att).view(x.shape[0],-1) #bs,K | ||
return F.softmax(att/self.temprature,-1) | ||
|
||
class DynamicConv(nn.Module): | ||
def __init__(self,in_planes,out_planes,kernel_size,stride,padding=0,dilation=1,grounps=1,bias=True,K=4,temprature=30,ratio=4,init_weight=True): | ||
super().__init__() | ||
self.in_planes=in_planes | ||
self.out_planes=out_planes | ||
self.kernel_size=kernel_size | ||
self.stride=stride | ||
self.padding=padding | ||
self.dilation=dilation | ||
self.groups=grounps | ||
self.bias=bias | ||
self.K=K | ||
self.init_weight=init_weight | ||
self.attention=Attention(in_planes=in_planes,ratio=ratio,K=K,temprature=temprature,init_weight=init_weight) | ||
|
||
self.weight=nn.Parameter(torch.randn(K,out_planes,in_planes//grounps,kernel_size,kernel_size),requires_grad=True) | ||
if(bias): | ||
self.bias=nn.Parameter(torch.randn(K,out_planes),requires_grad=True) | ||
else: | ||
self.bias=None | ||
|
||
if(self.init_weight): | ||
self._initialize_weights() | ||
|
||
#TODO 初始化 | ||
def _initialize_weights(self): | ||
for i in range(self.K): | ||
nn.init.kaiming_uniform_(self.weight[i]) | ||
|
||
def forward(self,x): | ||
bs,in_planels,h,w=x.shape | ||
softmax_att=self.attention(x) #bs,K | ||
x=x.view(1,-1,h,w) | ||
weight=self.weight.view(self.K,-1) #K,-1 | ||
aggregate_weight=torch.mm(softmax_att,weight).view(bs*self.out_planes,self.in_planes//self.groups,self.kernel_size,self.kernel_size) #bs*out_p,in_p,k,k | ||
|
||
if(self.bias is not None): | ||
bias=self.bias.view(self.K,-1) #K,out_p | ||
aggregate_bias=torch.mm(softmax_att,bias).view(-1) #bs,out_p | ||
output=F.conv2d(x,weight=aggregate_weight,bias=aggregate_bias,stride=self.stride,padding=self.padding,groups=self.groups*bs,dilation=self.dilation) | ||
else: | ||
output=F.conv2d(x,weight=aggregate_weight,bias=None,stride=self.stride,padding=self.padding,groups=self.groups*bs,dilation=self.dilation) | ||
|
||
output=output.view(bs,self.out_planes,h,w) | ||
return output | ||
|
||
if __name__ == '__main__': | ||
input=torch.randn(2,32,64,64) | ||
m=DynamicConv(in_planes=32,out_planes=64,kernel_size=3,stride=1,padding=1,bias=False) | ||
out=m(input) | ||
print(out.shape) |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.