Skip to content

lobyliang/rbfn-with-tensorflow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

RBF NETWORK with Tensorflow

The theory behind this architecture can be foun in the article

DataSet

The dataset used for this network is mnist which has 55000 images (table 55000x784) as training set and 10000 images (table 10000x784) as test set. Each image has a size of 784 pixels. The data set is imported from tensorflow (tensorflow.examples.tutorials.mnist)

Architecture

  • The network can seperated in two different subnetworks. The first one has as input layer the input vector and output layer the rbf neurons. The second subnetwork has as input layer the rbf neurons and output layer the output layer of thehole network.

  • First subnetwork

    To calculate the center and the radius(σ) of each rbf neuron we use the algorithm kmeans.

    Input vector (image): [1,784]

    Output vector : [1,k], where k is the number of rbf neurons

  • Second subnetwork

    The second subnetwork is a multilayer percetron with no hidden layers. To train the network the tensorflow framework is used

    Input vector: [1,k], the output of the first subnetwork

    Output vector: [1,n], the number of different classes in our case n = 10

Execution

To run an experiment using this network the only thing you need to do is set the variable k at method experiment. The results are the accuracy of the network on training and test set.

Results

Number of rbf neurons: 410

Test accuracy: 87.48%

Train accuracy: 86.56%

Alt text

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%