-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
202 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
import tensorflow as tf | ||
import tensorflow_quantum as tfq | ||
import cirq | ||
import sympy | ||
import numpy as np | ||
import random | ||
from functools import reduce | ||
import operator | ||
from stable_baselines3 import SAC | ||
|
||
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) | ||
|
||
def layer(circuit, qubits, parameters): | ||
for i in range(len(qubits)): | ||
circuit.append([cirq.rx(parameters[i]).on(qubits[i])]) | ||
for i in range(len(qubits)): | ||
circuit.append([cirq.rz(parameters[len(qubits) + i]).on(qubits[i])]) | ||
for i in range(len(qubits)-1): | ||
circuit.append([cirq.CNOT(qubits[i], qubits[i+1])]) | ||
return circuit | ||
|
||
def ansatz(circuit, qubits, layers, parameters): | ||
for i in range(layers): | ||
p = parameters[2 * i * len(qubits):2 * (i + 1) * len(qubits)] | ||
circuit = layer(circuit, qubits, p) | ||
return circuit | ||
|
||
def hamiltonian(circuit, qubits, ham): | ||
for i in range(len(qubits)): | ||
if ham[i] == "x": | ||
circuit.append(cirq.ry(-np.pi/2).on(qubits[i])) | ||
elif ham[i] == "y": | ||
circuit.append(cirq.rx(np.pi/2).on(qubits[i])) | ||
return circuit | ||
|
||
def create_vqe(qubits, layers, parameters, ham): | ||
circuit = ansatz(cirq.Circuit(), qubits, layers, parameters) | ||
circuit += hamiltonian(circuit, qubits, ham) | ||
return circuit | ||
|
||
def prod(iterable): | ||
return reduce(operator.mul, iterable, 1) | ||
|
||
def expcost(qubits, ham): | ||
return prod([cirq.Z(qubits[i]) for i in range(len(qubits)) if ham[i] != "i"]) | ||
|
||
possibilities = ["i", "x", "y", "z"] | ||
l = 10 | ||
q = 20 | ||
|
||
hamilton = [[random.choice(possibilities) for _ in range(q)] for _ in range(l)] | ||
h_weights = [random.uniform(-1, 1) for _ in range(l)] | ||
|
||
lay = 5 | ||
|
||
qubits = [cirq.GridQubit(0, i) for i in range(q)] | ||
num_param = lay * 2 * q | ||
params = sympy.symbols('vqe0:%d'%num_param) | ||
|
||
class VQE(tf.keras.layers.Layer): | ||
def __init__(self, num_weights, circuits, ops) -> None: | ||
super(VQE, self).__init__() | ||
self.w = tf.Variable(np.random.uniform(0, np.pi, (1, num_weights)), dtype=tf.float32) | ||
#self.layers = [tfq.layers.ControlledPQC(circuits[i], ops[i], repetitions=1000, differentiator=tfq.differentiators.ParameterShift()) for i in range(len(circuits))] | ||
self.layers = [tfq.layers.ControlledPQC(circuits[i], ops[i], differentiator=tfq.differentiators.Adjoint()) for i in range(len(circuits))] | ||
|
||
|
||
def call(self, input): | ||
return sum([self.layers[i]([input, self.w]) for i in range(len(self.layers))]) | ||
|
||
c_inputs = tfq.convert_to_tensor([cirq.Circuit()]) | ||
vqe_components = [] | ||
cs = [] | ||
op = [] | ||
|
||
for i in range(len(hamilton)): | ||
readout_ops = h_weights[i] * expcost(qubits, hamilton[i]) | ||
op.append(readout_ops) | ||
cs.append(create_vqe(qubits, lay, params, hamilton[i])) | ||
|
||
opt = tf.keras.optimizers.Adam(lr=0.01) | ||
|
||
def loss_fn(x): | ||
return x.numpy() | ||
|
||
es = 150 | ||
|
||
def encoding(size, num_q, num_d, struct, weights, error): | ||
state = np.zeros(shape=(size, 8)) | ||
for i in range(len(weights)): | ||
q = i % num_q | ||
state[i] = [-error, weights[i], struct[i], q, i//num_q, num_q, num_d, 0] | ||
return state.flatten() | ||
|
||
def cnn_enc(max_q, max_d, num_q, struct, weights, error): | ||
state = np.zeros(shape=(max_q, max_d, 5)) | ||
for i in range(len(weights)): | ||
qubit_number = i % num_q | ||
depth_number = i // num_q | ||
state[qubit_number][depth_number][struct[i]] = weights[i] | ||
state[:,:,3] = 0 | ||
state[:,:,4] = error | ||
return state.transpose(2, 0, 1) | ||
|
||
sac_agent = SAC.load("sac_mlp_large") | ||
sac_cnn_agent = SAC.load("sac_cnn_20_20_150") | ||
opter = tf.keras.optimizers.Adam(lr=0.01) | ||
|
||
mlp_mins_train = [] | ||
cnn_mins_train = [] | ||
grad_mins_train = [] | ||
mixed_mins_train = [] | ||
|
||
rep = 3 | ||
for it in range(rep): | ||
print(it) | ||
ins = tf.keras.layers.Input(shape=(), dtype=tf.dtypes.string) | ||
v = VQE(num_param, cs, op)(ins) | ||
vqc = tf.keras.models.Model(inputs=ins, outputs=v) | ||
|
||
inputs = tf.keras.Input(shape=(), dtype=tf.dtypes.string) | ||
layer1 = VQE(num_param, cs, op)(inputs) | ||
sac_vqc = tf.keras.models.Model(inputs=inputs, outputs=layer1) | ||
|
||
inputs = tf.keras.Input(shape=(), dtype=tf.dtypes.string) | ||
layer1 = VQE(num_param, cs, op)(inputs) | ||
sac_cnn_vqc = tf.keras.models.Model(inputs=inputs, outputs=layer1) | ||
|
||
inputs = tf.keras.Input(shape=(), dtype=tf.dtypes.string) | ||
layer1 = VQE(num_param, cs, op)(inputs) | ||
mixed = tf.keras.models.Model(inputs=inputs, outputs=layer1) | ||
|
||
inputs = tf.keras.Input(shape=(), dtype=tf.dtypes.string) | ||
layer1 = VQE(num_param, cs, op)(inputs) | ||
mixed_test = tf.keras.models.Model(inputs=inputs, outputs=layer1) | ||
|
||
sac_vqc.set_weights(vqc.get_weights()) | ||
sac_cnn_vqc.set_weights(vqc.get_weights()) | ||
mixed.set_weights(vqc.get_weights()) | ||
|
||
history = [] | ||
sac_loss = [] | ||
sac_cnn_loss = [] | ||
mixed_loss = [] | ||
|
||
for i in range(es): | ||
print(i, es) | ||
|
||
# SAC | ||
sac_error = loss_fn(sac_vqc(c_inputs)) | ||
sac_enc = encoding(400, q, lay * 2, ([0 for _ in range(q)] + [2 for _ in range(q)]) * lay, sac_vqc.trainable_variables[0].numpy()[0], sac_error) | ||
action, _ = sac_agent.predict(sac_enc) | ||
sac_vqc.set_weights([np.array([action[:num_param],])]) | ||
|
||
# SAC_CNN | ||
sac_cnn_error = loss_fn(sac_cnn_vqc(c_inputs)) | ||
sac_cnn_enc = cnn_enc(20, 20, q, ([0 for _ in range(q)] + [2 for _ in range(q)]) * lay, sac_cnn_vqc.trainable_variables[0].numpy()[0], sac_cnn_error) | ||
action, _ = sac_cnn_agent.predict(sac_cnn_enc) | ||
sac_cnn_vqc.set_weights([np.array([action[:num_param],])]) | ||
|
||
|
||
with tf.GradientTape() as tape: | ||
loss = mixed(c_inputs) | ||
grads = tape.gradient(loss, mixed.trainable_variables) | ||
opter.apply_gradients(zip(grads, mixed.trainable_variables)) | ||
|
||
sac_loss.append(loss_fn(sac_vqc(c_inputs))) | ||
sac_cnn_loss.append(loss_fn(sac_cnn_vqc(c_inputs))) | ||
|
||
sac_enc = encoding(400, q, lay * 2, ([0 for _ in range(q)] + [2 for _ in range(q)]) * lay, sac_vqc.trainable_variables[0].numpy()[0], loss.numpy()) | ||
mlp_action, _ = sac_agent.predict(sac_enc) | ||
mixed_test.set_weights([np.array([mlp_action[:num_param],])]) | ||
mlp_loss = loss_fn(mixed_test(c_inputs)) | ||
sac_cnn_enc = cnn_enc(20, 20, q, ([0 for _ in range(q)] + [2 for _ in range(q)]) * lay, sac_cnn_vqc.trainable_variables[0].numpy()[0], loss.numpy()) | ||
cnn_action, _ = sac_cnn_agent.predict(sac_cnn_enc) | ||
mixed_test.set_weights([np.array([cnn_action[:num_param],])]) | ||
cnn_loss = loss_fn(mixed_test(c_inputs)) | ||
|
||
losses = [mlp_loss, cnn_loss, loss_fn(mixed(c_inputs))] | ||
best = losses.index(min(losses)) | ||
if best == 0: | ||
mixed.set_weights([np.array([mlp_action[:num_param],])]) | ||
elif best == 1: | ||
mixed.set_weights([np.array([cnn_action[:num_param],])]) | ||
mixed_loss.append(loss_fn(mixed(c_inputs))) | ||
|
||
for i in range(es): | ||
with tf.GradientTape() as tape: | ||
error = vqc(c_inputs) | ||
grads = tape.gradient(error, vqc.trainable_variables) | ||
opt.apply_gradients(zip(grads, vqc.trainable_variables)) | ||
history.append(error.numpy()) | ||
print(i, history[-1]) | ||
|
||
cnn_mins_train.append(min(sac_cnn_loss)) | ||
mlp_mins_train.append(min(sac_loss)) | ||
mixed_mins_train.append(min(mixed_loss)) | ||
grad_mins_train.append(min(history)) | ||
|
||
print("Training") | ||
print("$", np.mean(mlp_mins_train), "\pm", np.std(mlp_mins_train), "$ & $", np.mean(cnn_mins_train), "\pm", np.std(cnn_mins_train), "$ & $",\ | ||
np.mean(grad_mins_train), "\pm", np.std(grad_mins_train), "$ & $", np.mean(mixed_mins_train), "\pm", np.std(mixed_mins_train), "$") |