forked from hunglc007/tensorflow-yolov4-tflite
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
94 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
import tensorflow as tf | ||
from absl import app, flags, logging | ||
from absl.flags import FLAGS | ||
from core.yolov4 import YOLO, decode, filter_boxes | ||
import core.utils as utils | ||
from core.config import cfg | ||
import tensorflow_model_optimization as tfmot | ||
|
||
|
||
flags.DEFINE_string('weights', './data/yolov4.weights', 'path to weights file') | ||
flags.DEFINE_string('output', './checkpoints/yolov4-416', 'path to output') | ||
flags.DEFINE_boolean('tiny', False, 'is yolo-tiny or not') | ||
flags.DEFINE_integer('input_size', 416, 'define input size of export model') | ||
flags.DEFINE_float('score_thres', 0.2, 'define score threshold') | ||
flags.DEFINE_float('initial_sparsity', 0.5, 'initial_sparsity') | ||
flags.DEFINE_float('final_sparsity', 0.8, 'final_sparsity') | ||
flags.DEFINE_string('framework', 'tf', 'define what framework do you want to convert (tf, trt, tflite)') | ||
flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4') | ||
|
||
def save_tf(): | ||
STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS) | ||
|
||
input_layer = tf.keras.layers.Input([FLAGS.input_size, FLAGS.input_size, 3]) | ||
feature_maps = YOLO(input_layer, NUM_CLASS, FLAGS.model, FLAGS.tiny) | ||
bbox_tensors = [] | ||
prob_tensors = [] | ||
if FLAGS.tiny: | ||
for i, fm in enumerate(feature_maps): | ||
if i == 0: | ||
output_tensors = decode(fm, FLAGS.input_size // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework) | ||
else: | ||
output_tensors = decode(fm, FLAGS.input_size // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework) | ||
bbox_tensors.append(output_tensors[0]) | ||
prob_tensors.append(output_tensors[1]) | ||
else: | ||
for i, fm in enumerate(feature_maps): | ||
if i == 0: | ||
output_tensors = decode(fm, FLAGS.input_size // 8, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework) | ||
elif i == 1: | ||
output_tensors = decode(fm, FLAGS.input_size // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework) | ||
else: | ||
output_tensors = decode(fm, FLAGS.input_size // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework) | ||
bbox_tensors.append(output_tensors[0]) | ||
prob_tensors.append(output_tensors[1]) | ||
pred_bbox = tf.concat(bbox_tensors, axis=1) | ||
pred_prob = tf.concat(prob_tensors, axis=1) | ||
if FLAGS.framework == 'tflite': | ||
pred = (pred_bbox, pred_prob) | ||
else: | ||
boxes, pred_conf = filter_boxes(pred_bbox, pred_prob, score_threshold=FLAGS.score_thres, input_shape=tf.constant([FLAGS.input_size, FLAGS.input_size])) | ||
pred = tf.concat([boxes, pred_conf], axis=-1) | ||
model = tf.keras.Model(input_layer, pred) | ||
utils.load_weights(model, FLAGS.weights, FLAGS.model, FLAGS.tiny) | ||
model.summary() | ||
|
||
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude | ||
|
||
# Compute end step to finish pruning after 2 epochs. | ||
batch_size = 128 | ||
epochs = 2 | ||
validation_split = 0.1 # 10% of training set will be used for validation set. | ||
|
||
num_images = train_images.shape[0] * (1 - validation_split) | ||
end_step = np.ceil(num_images / batch_size).astype(np.int32) * epochs | ||
|
||
# Define model for pruning. | ||
pruning_params = { | ||
'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=FLAGS.initial_sparsity, | ||
final_sparsity=FLAGS.final_sparsity, | ||
begin_step=0, | ||
end_step=end_step) | ||
} | ||
|
||
model_for_pruning = prune_low_magnitude(model, **pruning_params) | ||
|
||
# `prune_low_magnitude` requires a recompile. | ||
model_for_pruning.compile(optimizer='adam', | ||
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
metrics=['accuracy']) | ||
|
||
model_for_pruning.summary() | ||
|
||
|
||
model_for_pruning.save(FLAGS.output) | ||
|
||
def main(_argv): | ||
save_tf() | ||
|
||
if __name__ == '__main__': | ||
try: | ||
app.run(main) | ||
except SystemExit: | ||
pass | ||
|