Skip to content

Commit

Permalink
Merge pull request shiba24#4 from betterenvi/master
Browse files Browse the repository at this point in the history
Add .gitignore file and add verbose option in RankNet
  • Loading branch information
shiba24 authored May 27, 2017
2 parents 1f2d31d + f311b4d commit c865010
Show file tree
Hide file tree
Showing 2 changed files with 44 additions and 8 deletions.
34 changes: 34 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
*~*
*.swap
*.pyc
*Rhistory
*RData
*.swp
screenlog*
*.ign
*.ignore
.nfs*
trash*
*.zip
*.rar
*.blg
*.bbl
*.aux
*.log
*.brf
*.nlo
*.out
*.dvi
*.ps
*.lof
*.toc
*.fls
*.fdb_latexmk
*.pdfsync
*.synctex.gz
*.ind
*.ilg
*.idx
nohup.out
*.pdf
.ipynb_checkpoints/*
18 changes: 10 additions & 8 deletions rank/RankNet.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,14 +61,15 @@ class RankNet(NNfuncs.NN):
Usage (Traininng):
Model.fit(X, y)
With options:
Model.fit(X, y, batchsize=100, n_iter=5000, n_units1=512, n_units2=128, tv_ratio=0.95, optimizerAlgorithm="Adam", savefigName="result.pdf", savemodelName="RankNet.model")
"""
def __init__(self, resumemodelName=None):
def __init__(self, resumemodelName=None, verbose=True):
self.resumemodelName = resumemodelName
self.train_loss, self.test_loss = [], []
self._verbose = verbose
if resumemodelName is not None:
print("load resume model!")
self.loadModel(resumemodelName)
Expand Down Expand Up @@ -108,16 +109,17 @@ def trainModel(self, x_train, y_train, x_test, y_test, n_iter):
test_ndcg = self.ndcg(y_test, test_score)
self.train_loss.append(train_ndcg)
self.test_loss.append(test_ndcg)
print("step: {0}".format(step + 1))
print("NDCG@100 | train: {0}, test: {1}".format(train_ndcg, test_ndcg))
if self._verbose:
print("step: {0}".format(step + 1))
print("NDCG@100 | train: {0}, test: {1}".format(train_ndcg, test_ndcg))

def fit(self, fit_X, fit_y, batchsize=100, n_iter=5000, n_units1=512, n_units2=128, tv_ratio=0.95, optimizerAlgorithm="Adam", savefigName="result.pdf", savemodelName="RankNet.model"):
train_X, train_y, validate_X, validate_y = self.splitData(fit_X, fit_y, tv_ratio)
print("The number of data, train:", len(train_X), "validate:", len(validate_X))
print("The number of data, train:", len(train_X), "validate:", len(validate_X))

if self.resumemodelName is None:
self.initializeModel(Model, train_X, n_units1, n_units2, optimizerAlgorithm)

self.trainModel(train_X, train_y, validate_X, validate_y, n_iter)

plot_result.acc(self.train_loss, self.test_loss, savename=savefigName)
Expand Down Expand Up @@ -211,9 +213,9 @@ def fit(self, fit_X, fit_y, batchsize=100, n_iter=5000, n_units1=512, n_units2=1

# # plot_result(train_loss, test_loss, savename=savefigName)
# print('save the model')
# serializers.save_hdf5(savemodelName, model)
# serializers.save_hdf5(savemodelName, model)
# print('save the optimizer')
# serializers.save_hdf5(savemodelName[:-5]+ 'state', optimizer)
# serializers.save_hdf5(savemodelName[:-5]+ 'state', optimizer)
# return model


Expand Down

0 comments on commit c865010

Please sign in to comment.