forked from nickliqian/cnn_captcha
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
dev init commit and rebase recognoze object code
- Loading branch information
1 parent
1622e58
commit d9d82b9
Showing
6 changed files
with
178 additions
and
640 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
import tensorflow as tf | ||
import numpy as np | ||
import os | ||
from PIL import Image | ||
|
||
|
||
class CNN(object): | ||
def __init__(self, image_height, image_width, max_captcha, char_set, model_save_dir): | ||
# 初始值 | ||
self.image_height = image_height | ||
self.image_width = image_width | ||
self.max_captcha = max_captcha | ||
self.char_set = char_set | ||
self.char_set_len = len(char_set) | ||
self.model_save_dir = model_save_dir # 模型路径 | ||
self.w_alpha = 0.01 | ||
self.b_alpha = 0.1 | ||
# tf初始化占位符 | ||
self.X = tf.placeholder(tf.float32, [None, self.image_height * self.image_width]) # 特征向量 | ||
self.Y = tf.placeholder(tf.float32, [None, self.max_captcha * self.char_set_len]) # 标签 | ||
self.keep_prob = tf.placeholder(tf.float32) # dropout值 | ||
|
||
@staticmethod | ||
def gen_captcha_text_image(img_path, img_name): | ||
""" | ||
返回一个验证码的array形式和对应的字符串标签 | ||
:return:tuple (str, numpy.array) | ||
""" | ||
# 标签 | ||
label = img_name.split("_")[0] | ||
# 文件 | ||
img_file = os.path.join(img_path, img_name) | ||
captcha_image = Image.open(img_file) | ||
captcha_array = np.array(captcha_image) # 向量化 | ||
return label, captcha_array | ||
|
||
@staticmethod | ||
def convert2gray(img): | ||
""" | ||
图片转为灰度图,如果是3通道图则计算,单通道图则直接返回 | ||
:param img: | ||
:return: | ||
""" | ||
if len(img.shape) > 2: | ||
r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2] | ||
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b | ||
return gray | ||
else: | ||
return img | ||
|
||
def text2vec(self, text): | ||
""" | ||
转标签为oneHot编码 | ||
:param text: str | ||
:return: numpy.array | ||
""" | ||
text_len = len(text) | ||
if text_len > self.max_captcha: | ||
raise ValueError('验证码最长{}个字符'.format(self.max_captcha)) | ||
|
||
vector = np.zeros(self.max_captcha * self.char_set_len) | ||
|
||
for i, ch in enumerate(text): | ||
idx = i * self.char_set_len + self.char_set.index(ch) | ||
vector[idx] = 1 | ||
return vector | ||
|
||
def model(self): | ||
x = tf.reshape(self.X, shape=[-1, self.image_height, self.image_width, 1]) | ||
print(">>> input x: {}".format(x)) | ||
|
||
# 卷积层1 | ||
wc1 = tf.get_variable(name='wc1', shape=[3, 3, 1, 32], dtype=tf.float32, | ||
initializer=tf.contrib.layers.xavier_initializer()) | ||
bc1 = tf.Variable(self.b_alpha * tf.random_normal([32])) | ||
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, wc1, strides=[1, 1, 1, 1], padding='SAME'), bc1)) | ||
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') | ||
conv1 = tf.nn.dropout(conv1, self.keep_prob) | ||
|
||
# 卷积层2 | ||
wc2 = tf.get_variable(name='wc2', shape=[3, 3, 32, 64], dtype=tf.float32, | ||
initializer=tf.contrib.layers.xavier_initializer()) | ||
bc2 = tf.Variable(self.b_alpha * tf.random_normal([64])) | ||
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, wc2, strides=[1, 1, 1, 1], padding='SAME'), bc2)) | ||
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') | ||
conv2 = tf.nn.dropout(conv2, self.keep_prob) | ||
|
||
# 卷积层3 | ||
wc3 = tf.get_variable(name='wc3', shape=[3, 3, 64, 128], dtype=tf.float32, | ||
initializer=tf.contrib.layers.xavier_initializer()) | ||
bc3 = tf.Variable(self.b_alpha * tf.random_normal([128])) | ||
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, wc3, strides=[1, 1, 1, 1], padding='SAME'), bc3)) | ||
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') | ||
conv3 = tf.nn.dropout(conv3, self.keep_prob) | ||
print(">>> convolution 3: ", conv3.shape) | ||
next_shape = conv3.shape[1] * conv3.shape[2] * conv3.shape[3] | ||
|
||
# 全连接层1 | ||
wd1 = tf.get_variable(name='wd1', shape=[next_shape, 1024], dtype=tf.float32, | ||
initializer=tf.contrib.layers.xavier_initializer()) | ||
bd1 = tf.Variable(self.b_alpha * tf.random_normal([1024])) | ||
dense = tf.reshape(conv3, [-1, wd1.get_shape().as_list()[0]]) | ||
dense = tf.nn.relu(tf.add(tf.matmul(dense, wd1), bd1)) | ||
dense = tf.nn.dropout(dense, self.keep_prob) | ||
|
||
# 全连接层2 | ||
wout = tf.get_variable('name', shape=[1024, self.max_captcha * self.char_set_len], dtype=tf.float32, | ||
initializer=tf.contrib.layers.xavier_initializer()) | ||
bout = tf.Variable(self.b_alpha * tf.random_normal([self.max_captcha * self.char_set_len])) | ||
y_predict = tf.add(tf.matmul(dense, wout), bout) | ||
return y_predict |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
tensorflow==1.7.0 | ||
flask==1.0.2 | ||
requests==2.19.1 | ||
Pillow==4.3.0 | ||
matplotlib==2.1.0 | ||
easydict==1.8 | ||
numpy==1.16.2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.