forked from bbw7561135/TensorFlow2.0-Examples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
YunYang1994
authored and
YunYang1994
committed
Nov 5, 2019
1 parent
59be537
commit dc99c7f
Showing
1 changed file
with
105 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
#! /usr/bin/env python | ||
# coding=utf-8 | ||
#================================================================ | ||
# Copyright (C) 2019 * Ltd. All rights reserved. | ||
# | ||
# Editor : VIM | ||
# File name : autoencoder.py | ||
# Author : YunYang1994 | ||
# Created date: 2019-11-05 19:53:58 | ||
# Description : | ||
# | ||
#================================================================ | ||
|
||
import random | ||
import numpy as np | ||
import tensorflow as tf | ||
import matplotlib.pyplot as plt | ||
from matplotlib import cm | ||
|
||
|
||
class Encoder(tf.keras.Model): | ||
def __init__(self): | ||
super(Encoder, self).__init__() | ||
self.dense_1 = tf.keras.layers.Dense(128, activation='tanh') | ||
self.dense_2 = tf.keras.layers.Dense(64 , activation='tanh') | ||
self.dense_3 = tf.keras.layers.Dense(32 , activation='tanh') | ||
self.dense_4 = tf.keras.layers.Dense(2 , activation='sigmoid') | ||
def call(self, x, training=False): | ||
out = self.dense_1(x) | ||
out = self.dense_2(out) | ||
out = self.dense_3(out) | ||
out = self.dense_4(out) | ||
return out | ||
|
||
|
||
class Decoder(tf.keras.Model): | ||
def __init__(self): | ||
super(Decoder, self).__init__() | ||
self.dense_1 = tf.keras.layers.Dense(16 , activation='tanh') | ||
self.dense_2 = tf.keras.layers.Dense(64 , activation='tanh') | ||
self.dense_3 = tf.keras.layers.Dense(128, activation='tanh') | ||
self.dense_4 = tf.keras.layers.Dense(784, activation='sigmoid') | ||
def call(self, x, training=False): | ||
out = self.dense_1(x) | ||
out = self.dense_2(out) | ||
out = self.dense_3(out) | ||
out = self.dense_4(out) | ||
return out | ||
|
||
class Autoencoder(tf.keras.Model): | ||
def __init__(self): | ||
super(Autoencoder, self).__init__() | ||
self.encoder = Encoder() | ||
self.decoder = Decoder() | ||
def call(self, x, training=False): | ||
out = self.encoder(x, training) | ||
out = self.decoder(out, training) | ||
return out | ||
|
||
|
||
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data() | ||
X_train = np.reshape(X_train, (-1, 784)) / 255. | ||
batch_size = 512 | ||
optimizer = tf.keras.optimizers.Adam(lr=0.001) | ||
model = Autoencoder() | ||
sample = np.reshape(X_test[:5], (5, 784)) | ||
|
||
for step in range(10000): | ||
true_image = X_train[np.random.choice(X_train.shape[0], batch_size)] | ||
with tf.GradientTape() as tape: | ||
pred_image = model(true_image, training=True) | ||
loss = tf.reduce_mean(tf.square(pred_image-true_image)) | ||
gradients = tape.gradient(loss, model.trainable_variables) | ||
optimizer.apply_gradients(zip(gradients, model.trainable_variables)) | ||
if step % 200 == 0: print("=> %4d loss %.4f" %(step, loss)) | ||
if step % 1000 == 0: | ||
pred_image = model(sample, training=False) | ||
pred_image = np.reshape(pred_image, (5, 28, 28)) | ||
show_image = np.concatenate(pred_image[:5], -1) | ||
plt.tight_layout() | ||
plt.imshow(show_image) | ||
plt.savefig("%d.png" %((step+1) // 2000)) | ||
|
||
""" | ||
visualize embedding in 2D | ||
""" | ||
sample = np.reshape(X_test[:5000], (5000, 784)) | ||
label = y_test[:5000] | ||
embeddings = model.encoder(sample, training=False) | ||
|
||
fig,ax = plt.subplots() | ||
X, Y = embeddings[:,0].numpy(), embeddings[:,1].numpy() | ||
ax.set_xlim(X.min(), X.max()) | ||
ax.set_ylim(Y.min(), Y.max()) | ||
for x,y,l in zip(X,Y,label): | ||
c = cm.rainbow(int(255 *l/ 9)) | ||
ax.text(x, y, l, color=c) | ||
# plt.plot(x,y, '.', c=c) | ||
plt.axis('off') | ||
plt.legend() | ||
plt.tight_layout() | ||
plt.savefig("embedding.png") | ||
plt.show() | ||
|
||
|