Skip to content

Commit

Permalink
[references] add references since 2021 (hail-is#14339)
Browse files Browse the repository at this point in the history
  • Loading branch information
danking authored Feb 22, 2024
1 parent c4cba0d commit e002b4b
Showing 1 changed file with 222 additions and 1 deletion.
223 changes: 222 additions & 1 deletion website/website/pages/references.html
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,228 @@ <h1 id="logo-title">
<p>Or you could include the following line in your bibliography:</p>
<pre><code>Hail Team. Hail 0.2. https://github.com/hail-is/hail</code></pre>
<p>Otherwise, we welcome you to add additional examples by <a href="https://github.com/hail-is/hail/edit/main/website/website/pages/references.html">editing this page directly</a>, after which we will review the pull request to confirm the addition is valid. Please adhere to the existing formatting conventions.</p>
<p><em>Last updated on March 29th, 2021</em></p>
<p><em>Last updated on February 22, 2024</em></p>
<h2 id="section">2024</h2>
<ul>
<li>
<p>
Kwak, S.H., Srinivasan, S., Chen, L. et al. Genetic architecture and biology of
youth-onset type 2 diabetes. Nat Metab 6, 226–237
(2024). <a href="https://doi.org/10.1038/s42255-023-00970-0">https://doi.org/10.1038/s42255-023-00970-0</a>
<a href="https://www.nature.com/articles/s42255-023-00970-0">https://www.nature.com/articles/s42255-023-00970-0</a>
</p>
</li>
<li>
<p>
Zhao, S., Crouse, W., Qian, S. et al. Adjusting for genetic confounders in
transcriptome-wide association studies improves discovery of risk genes of complex
traits. Nat Genet 56, 336–347
(2024). <a href="https://doi.org/10.1038/s41588-023-01648-9">https://doi.org/10.1038/s41588-023-01648-9</a>
<a href="https://www.nature.com/articles/s41588-023-01648-9">https://www.nature.com/articles/s41588-023-01648-9</a>
</p>
</li>
</ul>
<h2 id="section">2023</h2>
<ul>
<li>
<p>
Lee, S., Kim, J. & Ohn, J.H. Exploring quantitative traits-associated copy number
deletions through reanalysis of UK10K consortium whole genome sequencing cohorts. BMC
Genomics 24, 787 (2023). <a href="https://doi.org/10.1186/s12864-023-09903-3">https://doi.org/10.1186/s12864-023-09903-3</a> <a href="https://link.springer.com/article/10.1186/s12864-023-09903-3">https://link.springer.com/article/10.1186/s12864-023-09903-3</a>
</p>
</li>
<li>
<p>
Langlieb, J., Sachdev, N.S., Balderrama, K.S. et al. The molecular cytoarchitecture of
the adult mouse brain. Nature 624, 333–342
(2023). <a href="https://doi.org/10.1038/s41586-023-06818-7">https://doi.org/10.1038/s41586-023-06818-7</a>
<a href="https://www.nature.com/articles/s41586-023-06818-7">https://www.nature.com/articles/s41586-023-06818-7</a>
</p>
</li>
<li>
<p>
Leońska-Duniec, A., Borczyk, M., Korostyński, M. et al. Genetic variants in myostatin
and its receptors promote elite athlete status. BMC Genomics 24, 761
(2023). <a href="https://doi.org/10.1186/s12864-023-09869-2">https://doi.org/10.1186/s12864-023-09869-2</a> <a href="https://link.springer.com/article/10.1186/s12864-023-09869-2">https://link.springer.com/article/10.1186/s12864-023-09869-2</a>
</p>
</li>
<li>
<p>
Chen, S., Francioli, L.C., Goodrich, J.K. et al. A genomic mutational constraint map
using variation in 76,156 human genomes. Nature 625, 92–100
(2024). <a href="https://doi.org/10.1038/s41586-023-06045-0">https://doi.org/10.1038/s41586-023-06045-0</a> <a href="https://www.nature.com/articles/s41586-023-06045-0">https://www.nature.com/articles/s41586-023-06045-0</a>
</p>
</li>
<li>
<p>
Mosca, M.J., Cho, H. Reconstruction of private genomes through reference-based genotype
imputation. Genome Biol 24, 271
(2023). <a href="https://doi.org/10.1186/s13059-023-03105-6">https://doi.org/10.1186/s13059-023-03105-6</a> <a href="https://link.springer.com/article/10.1186/s13059-023-03105-6">https://link.springer.com/article/10.1186/s13059-023-03105-6</a>
</p>
</li>
<li>
<p>
Stöberl, N., Donaldson, J., Binda, C.S. et al. Mutant huntingtin confers cell-autonomous
phenotypes on Huntington’s disease iPSC-derived microglia. Sci Rep 13, 20477
(2023). <a href="https://doi.org/10.1038/s41598-023-46852-z">https://doi.org/10.1038/s41598-023-46852-z</a> <a href="https://www.nature.com/articles/s41598-023-46852-z">https://www.nature.com/articles/s41598-023-46852-z</a>
</p>
</li>
<li>
<p>
Tamman, A.J.F., Koller, D., Nagamatsu, S. et al. Psychosocial moderators of polygenic
risk scores of inflammatory biomarkers in relation to GrimAge. Neuropsychopharmacol. 49,
699–708
(2024). <a href="https://doi.org/10.1038/s41386-023-01747-5">https://doi.org/10.1038/s41386-023-01747-5</a> <a href="https://www.nature.com/articles/s41386-023-01747-5">https://www.nature.com/articles/s41386-023-01747-5</a>
</p>
</li>
<li>
<p>
Mignogna, G., Carey, C.E., Wedow, R. et al. Patterns of item nonresponse behaviour to
survey questionnaires are systematic and associated with genetic loci. Nat Hum Behav 7,
1371–1387
(2023). <a href="https://doi.org/10.1038/s41562-023-01632-7">https://doi.org/10.1038/s41562-023-01632-7</a> <a href="https://www.nature.com/articles/s41562-023-01632-7">https://www.nature.com/articles/s41562-023-01632-7</a>
</p>
</li>
<li>
<p>
Al-Jumaan, M., Chu, H., Alsulaiman, A. et al. Interplay of Mendelian and polygenic risk
factors in Arab breast cancer patients. Genome Med 15, 65
(2023). <a href="https://doi.org/10.1186/s13073-023-01220-4">https://doi.org/10.1186/s13073-023-01220-4</a> <a href="https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-023-01220-4">https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-023-01220-4</a>
</p>
</li>
<li>
<p>
Ilves N, Pajusalu S, Kahre T, et al. High Prevalence of Collagenopathies in Preterm- and
Term-Born Children With Periventricular Venous Hemorrhagic Infarction. Journal of Child
Neurology. 2023;38(6-7):373-388. doi:10.1177/08830738231186233. <a href="https://journals.sagepub.com/doi/full/10.1177/08830738231186233">https://journals.sagepub.com/doi/full/10.1177/08830738231186233</a>
</p>
</li>
<li>
<p>
Mignogna, G., Carey, C.E., Wedow, R. et al. Patterns of item nonresponse behaviour to
survey questionnaires are systematic and associated with genetic loci. Nat Hum Behav 7,
1371–1387
(2023). <a href="https://doi.org/10.1038/s41562-023-01632-7">https://doi.org/10.1038/s41562-023-01632-7</a> <a href="https://www.nature.com/articles/s41562-023-01632-7">https://www.nature.com/articles/s41562-023-01632-7</a>
</p>
</li>
<li>
<p>
Josefine U Melchiorsen, Kimmie V Sørensen, Jette Bork-Jensen, Hüsün S Kizilkaya, Lærke S
Gasbjerg, Alexander S Hauser, Jørgen Rungby, Henrik T Sørensen, Allan Vaag, Jens S
Nielsen, Oluf Pedersen, Allan Linneberg, Bolette Hartmann, Anette P Gjesing, Jens J
Holst, Torben Hansen, Mette M Rosenkilde, Niels Grarup, Rare Heterozygous
Loss-of-Function Variants in the Human GLP-1 Receptor Are Not Associated With
Cardiometabolic Phenotypes, The Journal of Clinical Endocrinology & Metabolism, Volume
108, Issue 11, November 2023, Pages
2821–2833, <a href="https://doi.org/10.1210/clinem/dgad290">https://doi.org/10.1210/clinem/dgad290</a>. <a href="https://academic.oup.com/jcem/article/108/11/2821/7180819">https://academic.oup.com/jcem/article/108/11/2821/7180819</a>
</p>
</li>
<li>
<p>
Vukadinovic, Milos et al. Deep learning-enabled analysis of medical images identifies
cardiac sphericity as an early marker of cardiomyopathy and related outcomes. Med,
Volume 4, Issue 4, 252 - 262.e3. <a href="https://www.cell.com/med/fulltext/S2666-6340(23)00069-7">https://www.cell.com/med/fulltext/S2666-6340(23)00069-7</a>
</p>
</li>
<li>
<p>
Epi25 Collaborative; Chen S, Neale BM, Berkovic SF. Shared and distinct ultra-rare
genetic risk for diverse epilepsies: A whole-exome sequencing study of 54,423
individuals across multiple genetic ancestries. medRxiv [Preprint]. 2023 Feb
24:2023.02.22.23286310. doi: 10.1101/2023.02.22.23286310. PMID: 36865150; PMCID:
PMC9980234. <a href="https://pubmed.ncbi.nlm.nih.gov/36865150/">https://pubmed.ncbi.nlm.nih.gov/36865150/</a>
</p>
</li>
<li>
<p>
Kurki, M.I., Karjalainen, J., Palta, P. et al. FinnGen provides genetic insights from a
well-phenotyped isolated population. Nature 613, 508–518
(2023). <a href="https://doi.org/10.1038/s41586-022-05473-8">https://doi.org/10.1038/s41586-022-05473-8</a> <a href="https://www.nature.com/articles/s41586-022-05473-8">https://www.nature.com/articles/s41586-022-05473-8</a>
</p>
</li>
<li>
<p>
Mortensen, Ó., Thomsen, E., Lydersen, L.N. et al. FarGen: Elucidating the distribution
of coding variants in the isolated population of the Faroe Islands. Eur J Hum Genet 31,
329–337
(2023). <a href="https://doi.org/10.1038/s41431-022-01227-2">https://doi.org/10.1038/s41431-022-01227-2</a> <a href="https://www.nature.com/articles/s41431-022-01227-2">https://www.nature.com/articles/s41431-022-01227-2</a>
</p>
</li>
<li>
<p>
Steiner, H.E., Carrion, K.C., Giles, J.B., Lima, A.R., Yee, K., Sun, X., Cavallari,
L.H., Perera, M.A., Duconge, J. and Karnes, J.H. (2023), Local Ancestry-Informed
Candidate Pathway Analysis of Warfarin Stable Dose in Latino Populations. Clin Pharmacol
Ther, 113:
680-691. <a href="https://doi.org/10.1002/cpt.2787">https://doi.org/10.1002/cpt.2787</a> <a href="https://ascpt.onlinelibrary.wiley.com/doi/full/10.1002/cpt.2787">https://ascpt.onlinelibrary.wiley.com/doi/full/10.1002/cpt.2787</a>
</p>
</li>
</ul>
<h2 id="section">2022</h2>
<ul>
<li>
<p>
Huang, J., Tao, Q., Ang, T.F.A. et al. The impact of increasing levels of blood
C-reactive protein on the inflammatory loci SPI1 and CD33 in Alzheimer’s disease. Transl
Psychiatry 12, 523
(2022). <a href="https://doi.org/10.1038/s41398-022-02281-6">https://doi.org/10.1038/s41398-022-02281-6</a> <a href="https://www.nature.com/articles/s41398-022-02281-6">https://www.nature.com/articles/s41398-022-02281-6</a>
</p>
</li>
<li>
<p>
Wadon, M.E., Fenner, E., Kendall, K.M. et al. Clinical and genotypic analysis in
determining dystonia non-motor phenotypic heterogeneity: a UK Biobank study. J Neurol
269, 6436–6451 (2022). <a href="https://doi.org/10.1007/s00415-022-11307-4">https://doi.org/10.1007/s00415-022-11307-4</a> <a href="https://link.springer.com/article/10.1007/s00415-022-11307-4">https://link.springer.com/article/10.1007/s00415-022-11307-4</a>
</p>
</li>
<li>
<p>
Andi Madihah Manggabarani, Takuyu Hashiguchi, Masatsugu Hashiguchi, Atsushi Hayashi,
Masataka Kikuchi, Yusdar Mustamin, Masaru Bamba, Kunihiro Kodama, Takanari Tanabata,
Sachiko Isobe, Hidenori Tanaka, Ryo Akashi, Akihiro Nakaya, Shusei Sato, Construction of
prediction models for growth traits of soybean cultivars based on phenotyping in diverse
genotype and environment combinations, DNA Research, Volume 29, Issue 4, August 2022,
dsac024, <a href="https://doi.org/10.1093/dnares/dsac024">https://doi.org/10.1093/dnares/dsac024</a> <a href="https://academic.oup.com/dnaresearch/article/29/4/dsac024/6653298?login=false">https://academic.oup.com/dnaresearch/article/29/4/dsac024/6653298?login=false</a>
</p>
</li>
<li>
<p>
Chaffin, M., Papangeli, I., Simonson, B. et al. Single-nucleus profiling of human
dilated and hypertrophic cardiomyopathy. Nature 608, 174–180
(2022). <a href="https://doi.org/10.1038/s41586-022-04817-8">https://doi.org/10.1038/s41586-022-04817-8</a> <a href="https://www.nature.com/articles/s41586-022-04817-8">https://www.nature.com/articles/s41586-022-04817-8</a>
</p>
</li>
<li>
<p>
Lee, J., Lee, J., Jeon, S. et al. A database of 5305 healthy Korean individuals reveals
genetic and clinical implications for an East Asian population. Exp Mol Med 54,
1862–1871
(2022). <a href="https://doi.org/10.1038/s12276-022-00871-4">https://doi.org/10.1038/s12276-022-00871-4</a> <a href="https://www.nature.com/articles/s12276-022-00871-4">https://www.nature.com/articles/s12276-022-00871-4</a>
</p>
</li>
<li>
<p>
Akingbuwa, W.A., Hammerschlag, A.R., Bartels, M. et al. Ultra-rare and common genetic
variant analysis converge to implicate negative selection and neuronal processes in the
aetiology of schizophrenia. Mol Psychiatry 27, 3699–3707
(2022). <a href="https://doi.org/10.1038/s41380-022-01621-8">https://doi.org/10.1038/s41380-022-01621-8</a> <a href="https://www.nature.com/articles/s41380-022-01621-8">https://www.nature.com/articles/s41380-022-01621-8</a>
</p>
</li>
<li>
<p>
Mitja, K.I., et al. FinnGen: Unique genetic insights from combining isolated population
and national health register data. medRxiv 2022.03.03.22271360;
doi: <a href="https://doi.org/10.1101/2022.03.03.22271360">https://doi.org/10.1101/2022.03.03.22271360</a>. <a href="https://www.medrxiv.org/content/10.1101/2022.03.03.22271360v1">https://www.medrxiv.org/content/10.1101/2022.03.03.22271360v1</a>
</p>
</li>
<li>
<p>
Akingbuwa, O. A. (2022). Polygenic analyses of childhood and adult psychopathology, and
their overlap. [PhD- Thesis - Research and graduation internal, Vrije Universiteit
Amsterdam]. <a href="https://research.vu.nl/ws/portalfiles/portal/149553301/O+A++Akingbuwa+-+thesis.pdf">https://research.vu.nl/ws/portalfiles/portal/149553301/O+A++Akingbuwa+-+thesis.pdf</a>
</p>
</li>
</ul>
<h2 id="section">2021</h2>
<ul>
<li>
Expand Down

0 comments on commit e002b4b

Please sign in to comment.