Skip to content

Commit

Permalink
docs/library/uctypes: Add examples and make general updates.
Browse files Browse the repository at this point in the history
Examples are added to the beginning of the module docs, similarly to docs
for many other modules.

Improvements to grammar, style, and clarity. Some paragraphs are updated
with better suggestions. A warning added of the effect incorrect usage of
the module may have. Describe the fact that offset range used in one
defined structure is limited.
  • Loading branch information
pfalcon authored and dpgeorge committed Oct 23, 2018
1 parent c638d86 commit dd76c8d
Showing 1 changed file with 149 additions and 34 deletions.
183 changes: 149 additions & 34 deletions docs/library/uctypes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -11,27 +11,99 @@ module is to define data structure layout with about the same power as the
C language allows, and then access it using familiar dot-syntax to reference
sub-fields.

.. warning::

``uctypes`` module allows access to arbitrary memory addresses of the
machine (including I/O and control registers). Uncareful usage of it
may lead to crashes, data loss, and even hardware malfunction.

.. seealso::

Module :mod:`ustruct`
Standard Python way to access binary data structures (doesn't scale
well to large and complex structures).

Usage examples::

import uctypes

# Example 1: Subset of ELF file header
# https://wikipedia.org/wiki/Executable_and_Linkable_Format#File_header
ELF_HEADER = {
"EI_MAG": (0x0 | uctypes.ARRAY, 4 | uctypes.UINT8),
"EI_DATA": 0x5 | uctypes.UINT8,
"e_machine": 0x12 | uctypes.UINT16,
}

# "f" is an ELF file opened in binary mode
buf = f.read(uctypes.sizeof(ELF_HEADER, uctypes.LITTLE_ENDIAN))
header = uctypes.struct(uctypes.addressof(buf), ELF_HEADER, uctypes.LITTLE_ENDIAN)
assert header.EI_MAG == b"\x7fELF"
assert header.EI_DATA == 1, "Oops, wrong endianness. Could retry with uctypes.BIG_ENDIAN."
print("machine:", hex(header.e_machine))


# Example 2: In-memory data structure, with pointers
COORD = {
"x": 0 | uctypes.FLOAT32,
"y": 4 | uctypes.FLOAT32,
}

STRUCT1 = {
"data1": 0 | uctypes.UINT8,
"data2": 4 | uctypes.UINT32,
"ptr": (8 | uctypes.PTR, COORD),
}

# Suppose you have address of a structure of type STRUCT1 in "addr"
# uctypes.NATIVE is optional (used by default)
struct1 = uctypes.struct(addr, STRUCT1, uctypes.NATIVE)
print("x:", struct1.ptr[0].x)


# Example 3: Access to CPU registers. Subset of STM32F4xx WWDG block
WWDG_LAYOUT = {
"WWDG_CR": (0, {
# BFUINT32 here means size of the WWDG_CR register
"WDGA": 7 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"T": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,
}),
"WWDG_CFR": (4, {
"EWI": 9 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"WDGTB": 7 << uctypes.BF_POS | 2 << uctypes.BF_LEN | uctypes.BFUINT32,
"W": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,
}),
}

WWDG = uctypes.struct(0x40002c00, WWDG_LAYOUT)

WWDG.WWDG_CFR.WDGTB = 0b10
WWDG.WWDG_CR.WDGA = 1
print("Current counter:", WWDG.WWDG_CR.T)

Defining structure layout
-------------------------

Structure layout is defined by a "descriptor" - a Python dictionary which
encodes field names as keys and other properties required to access them as
associated values. Currently, uctypes requires explicit specification of
offsets for each field. Offset are given in bytes from a structure start.
associated values::

{
"field1": <properties>,
"field2": <properties>,
...
}

Currently, ``uctypes`` requires explicit specification of offsets for each
field. Offset are given in bytes from the structure start.

Following are encoding examples for various field types:

* Scalar types::

"field_name": offset | uctypes.UINT32

in other words, value is scalar type identifier ORed with field offset
in other words, the value is a scalar type identifier ORed with a field offset
(in bytes) from the start of the structure.

* Recursive structures::
Expand All @@ -41,52 +113,54 @@ Following are encoding examples for various field types:
"b1": 1 | uctypes.UINT8,
})

i.e. value is a 2-tuple, first element of which is offset, and second is
i.e. value is a 2-tuple, first element of which is an offset, and second is
a structure descriptor dictionary (note: offsets in recursive descriptors
are relative to the structure it defines).
are relative to the structure it defines). Of course, recursive structures
can be specified not just by a literal dictionary, but by referring to a
structure descriptor dictionary (defined earlier) by name.

* Arrays of primitive types::

"arr": (offset | uctypes.ARRAY, size | uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is ARRAY flag ORed
with offset, and second is scalar element type ORed number of elements
in array.
in the array.

* Arrays of aggregate types::

"arr2": (offset | uctypes.ARRAY, size, {"b": 0 | uctypes.UINT8}),

i.e. value is a 3-tuple, first element of which is ARRAY flag ORed
with offset, second is a number of elements in array, and third is
descriptor of element type.
with offset, second is a number of elements in the array, and third is
a descriptor of element type.

* Pointer to a primitive type::

"ptr": (offset | uctypes.PTR, uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is PTR flag ORed
with offset, and second is scalar element type.
with offset, and second is a scalar element type.

* Pointer to an aggregate type::

"ptr2": (offset | uctypes.PTR, {"b": 0 | uctypes.UINT8}),

i.e. value is a 2-tuple, first element of which is PTR flag ORed
with offset, second is descriptor of type pointed to.
with offset, second is a descriptor of type pointed to.

* Bitfields::

"bitf0": offset | uctypes.BFUINT16 | lsbit << uctypes.BF_POS | bitsize << uctypes.BF_LEN,

i.e. value is type of scalar value containing given bitfield (typenames are
similar to scalar types, but prefixes with "BF"), ORed with offset for
i.e. value is a type of scalar value containing given bitfield (typenames are
similar to scalar types, but prefixes with ``BF``), ORed with offset for
scalar value containing the bitfield, and further ORed with values for
bit offset and bit length of the bitfield within scalar value, shifted by
BF_POS and BF_LEN positions, respectively. Bitfield position is counted
from the least significant bit, and is the number of right-most bit of a
field (in other words, it's a number of bits a scalar needs to be shifted
right to extract the bitfield).
bit position and bit length of the bitfield within the scalar value, shifted by
BF_POS and BF_LEN bits, respectively. A bitfield position is counted
from the least significant bit of the scalar (having position of 0), and
is the number of right-most bit of a field (in other words, it's a number
of bits a scalar needs to be shifted right to extract the bitfield).

In the example above, first a UINT16 value will be extracted at offset 0
(this detail may be important when accessing hardware registers, where
Expand Down Expand Up @@ -126,10 +200,11 @@ Module contents
Layout type for a native structure - with data endianness and alignment
conforming to the ABI of the system on which MicroPython runs.

.. function:: sizeof(struct)
.. function:: sizeof(struct, layout_type=NATIVE)

Return size of data structure in bytes. Argument can be either structure
class or specific instantiated structure object (or its aggregate field).
Return size of data structure in bytes. The *struct* argument can be
either a structure class or a specific instantiated structure object
(or its aggregate field).

.. function:: addressof(obj)

Expand All @@ -151,6 +226,35 @@ Module contents
so it can be both written too, and you will access current value
at the given memory address.

.. data:: UINT8
INT8
UINT16
INT16
UINT32
INT32
UINT64
INT64

Integer types for structure descriptors. Constants for 8, 16, 32,
and 64 bit types are provided, both signed and unsigned.

.. data:: FLOAT32
FLOAT64

Floating-point types for structure descriptors.

.. data:: VOID

``VOID`` is an alias for ``UINT8``, and is provided to conviniently define
C's void pointers: ``(uctypes.PTR, uctypes.VOID)``.

.. data:: PTR
ARRAY

Type constants for pointers and arrays. Note that there is no explicit
constant for structures, it's implicit: an aggregate type without ``PTR``
or ``ARRAY`` flags is a structure.

Structure descriptors and instantiating structure objects
---------------------------------------------------------

Expand All @@ -163,7 +267,7 @@ following sources:
system. Lookup these addresses in datasheet for a particular MCU/SoC.
* As a return value from a call to some FFI (Foreign Function Interface)
function.
* From uctypes.addressof(), when you want to pass arguments to an FFI
* From `uctypes.addressof()`, when you want to pass arguments to an FFI
function, or alternatively, to access some data for I/O (for example,
data read from a file or network socket).

Expand All @@ -181,30 +285,41 @@ the standard subscript operator ``[]`` - both read and assigned to.

If a field is a pointer, it can be dereferenced using ``[0]`` syntax
(corresponding to C ``*`` operator, though ``[0]`` works in C too).
Subscripting a pointer with other integer values but 0 are supported too,
Subscripting a pointer with other integer values but 0 are also supported,
with the same semantics as in C.

Summing up, accessing structure fields generally follows C syntax,
Summing up, accessing structure fields generally follows the C syntax,
except for pointer dereference, when you need to use ``[0]`` operator
instead of ``*``.

Limitations
-----------

Accessing non-scalar fields leads to allocation of intermediate objects
1. Accessing non-scalar fields leads to allocation of intermediate objects
to represent them. This means that special care should be taken to
layout a structure which needs to be accessed when memory allocation
is disabled (e.g. from an interrupt). The recommendations are:

* Avoid nested structures. For example, instead of
* Avoid accessing nested structures. For example, instead of
``mcu_registers.peripheral_a.register1``, define separate layout
descriptors for each peripheral, to be accessed as
``peripheral_a.register1``.
* Avoid other non-scalar data, like array. For example, instead of
``peripheral_a.register[0]`` use ``peripheral_a.register0``.

Note that these recommendations will lead to decreased readability
and conciseness of layouts, so they should be used only if the need
to access structure fields without allocation is anticipated (it's
even possible to define 2 parallel layouts - one for normal usage,
and a restricted one to use when memory allocation is prohibited).
``peripheral_a.register1``. Or just cache a particular peripheral:
``peripheral_a = mcu_registers.peripheral_a``. If a register
consists of multiple bitfields, you would need to cache references
to a particular register: ``reg_a = mcu_registers.peripheral_a.reg_a``.
* Avoid other non-scalar data, like arrays. For example, instead of
``peripheral_a.register[0]`` use ``peripheral_a.register0``. Again,
an alternative is to cache intermediate values, e.g.
``register0 = peripheral_a.register[0]``.

2. Range of offsets supported by the ``uctypes`` module is limited.
The exact range supported is considered an implementation detail,
and the general suggestion is to split structure definitions to
cover from a few kilobytes to a few dozen of kilobytes maximum.
In most cases, this is a natural situation anyway, e.g. it doesn't make
sense to define all registers of an MCU (spread over 32-bit address
space) in one structure, but rather a peripheral block by peripheral
block. In some extreme cases, you may need to split a structure in
several parts artificially (e.g. if accessing native data structure
with multi-megabyte array in the middle, though that would be a very
synthetic case).

0 comments on commit dd76c8d

Please sign in to comment.