usage: conv_rnn.py [-h] [--is_train IS_TRAIN] [--best_epoch BEST_EPOCH]
[--data_dir DATA_DIR] [--out_name OUT_NAME]
model_cfg_file path_cfg_file
functions: two modes, trn mode for trn and validation, tst mode for tst (prediction)
positional arguments:
model_cfg_file
configuration file of model and train paramters
path_cfg_file
configuration file of data and experiment directories
optional arguments:
-h, --help show this help message and exit
--is_train IS_TRAIN
1 for train mode and 0 for test mode
--best_epoch BEST_EPOCH
option only in tst mode, the epoch used in tst
--data_dir DATA_DIR
option only in tst mode, the data_dir used in tst
--out_name OUT_NAME
option only in tst mode, the output file name in tst
- look at /app/trntst/unit_tst/prepare_data.py for the code to prepare data for trn and tst, the data is stored in tf records format
- look at /app/trntst/unit_tst/prepare_cfg.py for the code to generate model_cfg_file and path_cfg_file
- look at /app/trntst/unit_tst/trn.sh for the script to run trn mode
- look at /app/trntst/unit_tst/tst.sh for the script to run tst mode