forked from dengyang17/PACIFIC
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2869a7c
commit e959304
Showing
1 changed file
with
60 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
#!/usr/bin/python | ||
import argparse | ||
import json | ||
from tatqa_metric import * | ||
from typing import Any, Dict, Tuple | ||
|
||
|
||
def evaluate_json(golden_answers: Dict[str, Any], predicted_answers: Dict[str, Any]) -> Tuple[float, float]: | ||
|
||
em_and_f1 = TaTQAEmAndF1() | ||
for qas in golden_answers: | ||
for qa in qas["questions"]: | ||
query_id = qa["uid"] | ||
pred_answer, pred_scale = None, None | ||
if query_id in predicted_answers: | ||
pred_answer, pred_scale = predicted_answers[query_id] | ||
em_and_f1(ground_truth=qa, prediction=pred_answer, pred_scale=pred_scale) | ||
|
||
global_em, global_f1, global_scale, global_op = em_and_f1.get_overall_metric() | ||
print("----") | ||
print("Exact-match accuracy {0:.2f}".format(global_em * 100)) | ||
print("F1 score {0:.2f}".format(global_f1 * 100)) | ||
print("Scale score {0:.2f}".format(global_scale * 100)) | ||
print("{0:.2f} & {1:.2f}".format(global_em * 100, global_f1 * 100)) | ||
print("----") | ||
|
||
detail_raw = em_and_f1.get_raw_pivot_table() | ||
print("---- raw detail ---") | ||
print(detail_raw) | ||
detail_em, detail_f1 = em_and_f1.get_detail_metric() | ||
print("---- em detail ---") | ||
print(detail_em) | ||
print("---- f1 detail ---") | ||
print(detail_f1) | ||
|
||
|
||
def evaluate_prediction_file(gold_path: str, | ||
pred_path: str): | ||
|
||
golden_answers = json.load(open(gold_path, encoding='utf-8')) | ||
predicted_answers = json.load(open(pred_path, encoding='utf-8')) | ||
evaluate_json(golden_answers, predicted_answers) | ||
|
||
|
||
if __name__ == "__main__": | ||
# pylint: disable=invalid-name | ||
parser = argparse.ArgumentParser(description='evaluation on TAT-QA dataset') | ||
parser.add_argument("--gold_path", | ||
type=str, | ||
required=True, | ||
default="tatqa_dataset_test_gold.json", | ||
help='The path of the gold file') | ||
parser.add_argument("--pred_path", | ||
type=str, | ||
required=True, | ||
default="sample_predictions.json", | ||
help='The path of the prediction file') | ||
|
||
args = parser.parse_args() | ||
evaluate_prediction_file(args.gold_path, args.pred_path) |