Skip to content

Code repository of the paper "Clifford-Steerable Convolutional Neural Networks"

Notifications You must be signed in to change notification settings

maxxxzdn/clifford-group-equivariant-cnns

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Figure 1

Clifford-Steerable Convolutional Neural Networks

Authors: Maksim Zhdanov, David Ruhe, Maurice Weiler, and Ana Lucic, Johannes Brandstetter, Patrick Forré

ArXiv | Blog | Playbook | Google Colab

Abstract

We present Clifford-Steerable Convolutional Neural Networks (CS-CNNs), a novel class of $\mathrm{E}(p, q)$-equivariant CNNs. CS-CNNs process multivector fields on pseudo-Euclidean spaces $\mathbb{R}^{p,q}$. They cover, for instance, $\mathrm{E}(3)$-equivariance on $\mathbb{R}^3$ and Poincaré-equivariance on Minkowski spacetime $\mathbb{R}^{1,3}$. Our approach is based on an implicit parametrization of $\mathrm{O}(p,q)$-steerable kernels via Clifford group equivariant neural networks. We significantly and consistently outperform baseline methods on fluid dynamics as well as relativistic electrodynamics forecasting tasks.

Requirements

To install all the necessary requirements, including JAX and PyTorch, run:

bash setup.sh

Example code

Below is a simple example of initializing and applying a CS-ResNet to a random multivector input:

import jax

from algebra.cliffordalgebra import CliffordAlgebra
from models.resnets import CSResNet

algebra = CliffordAlgebra((1, 1))

config = dict(
    algebra=algebra,
    time_history=4,
    time_future=1,
    hidden_channels=16,
    kernel_num_layers=4,
    kernel_hidden_dim=12,
    kernel_size=7,
    bias_dims=(0,),
    product_paths_sum=algebra.geometric_product_paths.sum().item(),
    make_channels=1,
    blocks=(2, 2, 2, 2),
    norm=True,
    padding_mode="symmetric",
)

csresnet = CSResNet(**config)

# random input for initialization
rng = jax.random.PRNGKey(42)
mv_field = jax.random.normal(rng, (16, config.time_history, 64, 64, algebra.n_blades))
params = csresnet.init(rng, mv_field)

# compute the output
out = csresnet.apply(params, mv_field)

Note that the field must come in shape (Batch, Channels, ..., Blades), where ... indicates grid dimensions (depth, width, etc.).

Experiments

Navier-Stokes (PDEarena)

The instructions for the data generation can be found in datasets/data/ns/README.md.

cd datasets/data/ns
bash download.sh
python preprocess.py

To reproduce the experiment, run:

CS-ResNet

python experiment.py --experiment ns --model gcresnet --metric 1 1 --time_history 4 --time_future 1 --num_data 64 --batch_size 8 --norm 1 --hidden_channels 48

ResNet

python experiment.py --experiment ns --model resnet --metric 1 1 --time_history 4 --time_future 1 --num_data 64 --batch_size 8 --norm 1 --hidden_channels 96

Maxwell 3D (PDEarena)

The instructions for the data generation can be found in datasets/data/maxwell3d/README.md.

cd datasets/data/maxwell3d
bash download.sh
python preprocess.py

To reproduce the experiment, run:

CS-ResNet

python experiment.py --experiment maxwell3d --model gcresnet --metric 1 1 1 --time_history 4 --time_future 1 --num_data 64 --batch_size 2 --norm 1 --hidden_channels 12 --scheduler cosine

ResNet

python experiment.py --experiment maxwell3d --model resnet --metric 1 1 1 --time_history 4 --time_future 1 --num_data 64 --batch_size 2 --norm 1 --hidden_channels 12 --scheduler cosine

Maxwell 2D+1 (spacetime)

The instructions for the data generation can be found in datasets/data/maxwell2d/datagen/README.md.

cd datasets/datagen/maxwell2d
bash generate.sh --num_points 512 --partition train

To reproduce the experiment, run:

CS-ResNet

python experiment.py --experiment maxwell2d --model gcresnet --metric -1 1 1 --time_history 32 --time_future 32 --num_data 512 --batch_size 16 --norm 0 --hidden_channels 12

ResNet

python experiment.py --experiment maxwell2d --model resnet --metric -1 1 1 --time_history 32 --time_future 32 --num_data 512 --batch_size 16 --norm 0 --hidden_channels 13

TODO list

The repository is incomplete at the moment, below is the roadmap:

  • implementation of Clifford-steerable kernels/convolutions (in JAX)
  • implementation of Clifford-steerable ResNet and basic ResNet (in JAX)
  • demonstrating example + test equivariance (escnn + PyTorch required)
  • code for the data generation (Maxwell on spacetime)
  • replicating experimental results
    • Navier-Stokes (PDEarena)
    • Maxwell 3D (PDEarena)
    • Maxwell 2D+1 (PyCharge)
  • implementation of Clifford ResNet and Steerable ResNet (in PyTorch)

Citation

If you find this repository useful in your research, please consider citing us:

@inproceedings{Zhdanov2024CliffordSteerableCN,
    title = {Clifford-Steerable Convolutional Neural Networks},
    author = {Maksim Zhdanov and David Ruhe and Maurice Weiler and Ana Lucic and Johannes Brandstetter and Patrick Forr'e},
    booktitle = {International {Conference} on {Machine} {Learning} ({ICML})},
    year = {2024},
}

About

Code repository of the paper "Clifford-Steerable Convolutional Neural Networks"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published