forked from codebasics/py
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Dhaval Patel
committed
Jul 29, 2017
1 parent
67d821f
commit 262be50
Showing
1 changed file
with
298 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,298 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"<h1 style=\"color:blue\" align=\"center\">Pandas Time Series Analysis Tutorial: to_datetime</h1>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"DatetimeIndex(['2017-01-05', '2017-01-06', '2016-01-07', '2017-08-01',\n", | ||
" '2017-09-01'],\n", | ||
" dtype='datetime64[ns]', freq=None)" | ||
] | ||
}, | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"pd.to_datetime(['2017-01-05', 'Jan 6, 2017', '01/07/2016', '2017.08.01', '2017/09/01'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"<h3 style=\"color:purple\">Custom date time format</h3>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"Timestamp('2017-01-05 00:00:00')" | ||
] | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"pd.to_datetime('2017$01$05', format='%Y$%m$%d')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"Timestamp('2017-01-05 00:00:00')" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"pd.to_datetime('20170105', format='%Y%m%d')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"<h3 style=\"color:purple\">Handling invalid dates</h3>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array(['2017-01-05', 'Jan 6, 2017', 'abc'], dtype=object)" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"pd.to_datetime(['2017-01-05', 'Jan 6, 2017', 'abc'], errors='ignore')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"DatetimeIndex(['2017-01-05', '2017-01-06', 'NaT'], dtype='datetime64[ns]', freq=None)" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"pd.to_datetime(['2017-01-05', 'Jan 6, 2017', 'abc'], errors='coerce')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"<h3 style=\"color:purple\">European style dates with day first</h3>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"Timestamp('2016-12-30 00:00:00')" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"pd.to_datetime('30-12-2016')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"Timestamp('2016-01-05 00:00:00')" | ||
] | ||
}, | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"pd.to_datetime('5-1-2016', dayfirst=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"<h3 style=\"color:purple\">Epoch</h3>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"**Epoch or Unix time means number of seconds that have passed since Jan 1, 1970 00:00:00 UTC time**" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"Timestamp('2017-07-29 10:34:38')" | ||
] | ||
}, | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"current_epoch = 1501324478\n", | ||
"pd.to_datetime(current_epoch, unit='s')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"Timestamp('2017-07-29 10:34:38')" | ||
] | ||
}, | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"pd.to_datetime(current_epoch*1000, unit='ms')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"DatetimeIndex(['2017-07-29 10:34:38'], dtype='datetime64[ns]', freq=None)" | ||
] | ||
}, | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"t = pd.to_datetime([current_epoch], unit='s')\n", | ||
"t" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([1501324478000000000], dtype=int64)" | ||
] | ||
}, | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"t.view('int64')" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |