Skip to content

Commit

Permalink
Update snowflake-rest-sql.md
Browse files Browse the repository at this point in the history
  • Loading branch information
katarzyna-koltun-mx authored Jan 30, 2025
1 parent 90c7ef4 commit d38e44a
Showing 1 changed file with 16 additions and 15 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -14,21 +14,22 @@ The [Snowflake REST SQL connector](https://marketplace.mendix.com/link/component

The Snowflake REST SQL connector provides a way to first setup key-pair authentication with an RSA key pair according to PKCS #8 standard, and then execute SQL statements on Snowflake via a REST call from within your Mendix application. These statements allow you to perform the following tasks:

* Read data from Snowflake
* Write data to Snowflake
* Trigger [Snowflake Cortex ML functions](https://docs.snowflake.com/en/guides-overview-ml-functions)
* [Forecasting](https://docs.snowflake.com/en/user-guide/ml-functions/forecasting) predicts future metric values from past trends in time-series data.
* [Anomaly Detection](https://docs.snowflake.com/en/user-guide/ml-functions/anomaly-detection) flags metric values that differ from typical expectations.
* Use [Snowflake Cortex LLM functions](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions). Some very helpful use cases and examples for all of these functions, written by the Head of Snowflake Tech Consulting, can be found [here](https://medium.com/@karthiksraman).
* [CLASSIFY_TEXT](https://docs.snowflake.com/en/sql-reference/functions/classify_text-snowflake-cortex): Given a piece of text, classifies it into one of the categories that you define.
* [EXTRACT_ANSWER](https://docs.snowflake.com/en/sql-reference/functions/extract_answer-snowflake-cortex): Given a question and unstructured data, returns the answer to the question if it can be found in the data.
* [PARSE_DOCUMENT](https://docs.snowflake.com/en/sql-reference/functions/parse_document-snowflake-cortex): Given an internal or external stage with documents, returns an object that contains extracted text content using OCR mode, or the extracted text and layout elements using LAYOUT mode.
* [SENTIMENT](https://docs.snowflake.com/en/sql-reference/functions/sentiment-snowflake-cortex): Returns a sentiment score, from -1 to 1, representing the detected positive or negative sentiment of the given text.
* [SUMMARIZE](https://docs.snowflake.com/en/sql-reference/functions/summarize-snowflake-cortex): Returns a summary of the given text.
* [TRANSLATE](https://docs.snowflake.com/en/sql-reference/functions/translate-snowflake-cortex): Translates given text from any supported language to any other.
* [EMBED_TEXT_768](https://docs.snowflake.com/en/sql-reference/functions/embed_text-snowflake-cortex): Given a piece of text, returns a vector embedding of 768 dimensions that represents that text.
* [EMBED_TEXT_1024](https://docs.snowflake.com/en/sql-reference/functions/embed_text_1024-snowflake-cortex): Given a piece of text, returns a vector embedding of 1024 dimensions that represents that text.
* Use [Snowflake Cortex Analyst](https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-analyst): This Snowflake Cortex feature is used to get information/insights out of structured data sets using natural language instead of sql.
* Read data from Snowflake.
* Write data to Snowflake.
* Trigger [Snowflake Cortex ML functions](https://docs.snowflake.com/en/guides-overview-ml-functions):
* [Forecasting](https://docs.snowflake.com/en/user-guide/ml-functions/forecasting) - Predicts future metric values from past trends in time-series data.
* [Anomaly Detection](https://docs.snowflake.com/en/user-guide/ml-functions/anomaly-detection) - Flags metric values that differ from typical expectations.
* [CLASSIFY_TEXT](https://docs.snowflake.com/en/sql-reference/functions/classify_text-snowflake-cortex) - Given a piece of text, classifies it into one of the categories that you define.
* [EXTRACT_ANSWER](https://docs.snowflake.com/en/sql-reference/functions/extract_answer-snowflake-cortex) - Given a question and unstructured data, returns the answer to the question if it can be found in the data.
* [PARSE_DOCUMENT](https://docs.snowflake.com/en/sql-reference/functions/parse_document-snowflake-cortex) - Given an internal or external stage with documents, returns an object that contains extracted text content using OCR mode, or the extracted text and layout elements using LAYOUT mode.
* [SENTIMENT](https://docs.snowflake.com/en/sql-reference/functions/sentiment-snowflake-cortex) - Returns a sentiment score, from -1 to 1, representing the detected positive or negative sentiment of the given text.
* [SUMMARIZE](https://docs.snowflake.com/en/sql-reference/functions/summarize-snowflake-cortex) - Returns a summary of the given text.
* [TRANSLATE](https://docs.snowflake.com/en/sql-reference/functions/translate-snowflake-cortex) - Translates given text from any supported language to any other.
* [EMBED_TEXT_768](https://docs.snowflake.com/en/sql-reference/functions/embed_text-snowflake-cortex) - Given a piece of text, returns a vector embedding of 768 dimensions that represents that text.
* [EMBED_TEXT_1024](https://docs.snowflake.com/en/sql-reference/functions/embed_text_1024-snowflake-cortex) - Given a piece of text, returns a vector embedding of 1024 dimensions that represents that text.
* Use [Snowflake Cortex Analyst](https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-analyst) - This Snowflake Cortex feature is used to get information/insights out of structured data sets using natural language instead of sql.

For more use cases and examples for [Snowflake Cortex LLM functions](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions), written by the Head of Snowflake Tech Consulting, see [Karthik S Raman's Medium profile](https://medium.com/@karthiksraman).

The current version of the connector supports the following:

Expand Down

0 comments on commit d38e44a

Please sign in to comment.