Redis client with a focus on performance. Eredis also supports AUTH and SELECT.
If you have Redis running on localhost, with default settings, you may copy and paste the following into a shell to try out Eredis:
git clone git://github.com/wooga/eredis.git
cd eredis
./rebar compile
erl -pa ebin/
{ok, C} = eredis:start_link().
{ok, <<"OK">>} = eredis:q(C, ["SET", "foo", "bar"]).
{ok, <<"bar">>} = eredis:q(C, ["GET", "foo"]).
MSET and MGET:
KeyValuePairs = ["key1", "value1", "key2", "value2", "key3", "value3"].
{ok, <<"OK">>} = eredis:q(C, ["MSET" | KeyValuePairs]).
{ok, Values} = eredis:q(C, ["MGET" | ["key1", "key2", "key3"]]).
EUnit tests:
./rebar eunit
Eredis has only one function to interact with redis, which is
eredis:q(Client::pid(), Command::iolist())
. The response will either
be {ok, Value::binary()}
or {error, Message::binary()}
. The value
is always the binary value returned by Redis, without any type
conversion.
To start the client, use eredis:start_link/0
or
eredis:start_link/4
. start_link/4
takes the following arguments:
- Host, dns name or ip adress as string
- Port, integer
- Password, string or empty string([]) for no password
- Database, integer or 0 for default database
When Eredis for some reason looses the connection to Redis, Eredis will keep trying to reconnect until a connection is successfully established, which includes the AUTH and SELECT calls. The sleep time between attempts to reconnect is 100 milliseconds.
As long as the connection is down, Eredis will respond to any request
immediately with {error, no_connection}
without actually trying to
connect. This serves as a kind of circuit breaker and prevents a
stampede of clients just waiting for a failed connection attempt or
gen_server:call
timeout.
Note: If Eredis is starting up and cannot connect, it will fail
immediately with {connection_error, Reason}
.
Eredis also implements the AUTH and SELECT calls for you. When the
client is started with something else than default values for password
and database, it will issue the AUTH
and SELECT
commands
appropriately, even when reconnecting after a timeout.
Using basho_bench(https://github.com/basho/basho_bench/) you may
benchmark Eredis on your own hardware using the provided config and
driver. See priv/basho_bench_driver_eredis.config
and
src/basho_bench_driver_eredis.erl
.
Eredis uses the same queueing mechanism as Erldis. eredis:q/2
uses
gen_server:call/2
to do a blocking call to the client
gen_server. The client will immediately send the request to Redis, add
the caller to the queue and reply with noreply
. This frees the
gen_server up to accept new requests and parse responses as they come
on the socket.
When data is received on the socket, we call eredis_parser:parse/2
until it returns a value, we then use gen_server:reply/2
to reply to
the first process waiting in the queue.
This queueing mechanism works because Redis guarantees that the response will be in the same order as the requests.
The response parser is the biggest difference between Eredis and other
libraries like Erldis, redis-erl and redis_pool. The common approach
is to either directly block or use active once to get the first part
of the response, then repeatedly use gen_tcp:recv/2
to get more data
when needed. Profiling identified this as a bottleneck, in particular
for MGET
and HMGET
.
To be as fast as possible, Eredis takes a different approach. The socket is always set to active once, which will let us receive data fast without blocking the gen_server. The tradeoff is that we must parse partial responses, which makes the parser more complex.
In order to make multibulk responses more efficient, the parser will parse all data available and continue where it left off when more data is available.
When the parser is accumulating data, a new binary is generated for
every call to parse/2
. This might create binaries that will be
reference counted. This could be improved by replacing it with an
iolist.
When parsing bulk replies, the parser knows the size of the bulk. If the
bulk is big and would come in many chunks, this could improved by
having the client explicitly use gen_tcp:recv/2
to fetch the entire
bulk at once.
Although this project is almost a complete rewrite, many patterns are the same as you find in Erldis, most notably the queueing of requests.
create_multibulk/1
and to_binary/1
were taken verbatim from Erldis.