Skip to content

Commit

Permalink
Remove Refs to Microsoft.Quantum in Samples and Katas (#2030)
Browse files Browse the repository at this point in the history
- Removed references to Microsoft.Quantum.Unstable libraries from
Samples.
- Removed references to Microsoft.Quantum libraries from Katas.
- Renamed Microsoft.Quantum.Katas namespace to KatasUtils, but left in
reexports from Microsoft.Quantum.Katas for legacy solutions.
- Corrected some minor spelling and capitalization typos in the Samples
and Katas.

---------

Co-authored-by: Dmitry Vasilevsky <[email protected]>
  • Loading branch information
ScottCarda-MS and Dmitry Vasilevsky authored Dec 4, 2024
1 parent e731e84 commit efeac5c
Show file tree
Hide file tree
Showing 398 changed files with 1,752 additions and 1,584 deletions.
102 changes: 61 additions & 41 deletions katas/content/KatasLibrary.qs
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,29 @@
// Licensed under the MIT License.

namespace Microsoft.Quantum.Katas {
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Random;
import KatasUtils.*;
export
CheckOperationsAreEqualStrict,
CheckOperationsEquivalenceOnZeroState,
CheckOperationsEquivalenceOnInitialStateStrict,
CheckOperationsEquivalenceOnZeroStateStrict,
ShowQuantumStateComparison,
CheckOperationsEquivalenceOnZeroStateWithFeedback,
EntangleRegisters,
PrepDemoState,
DistinguishTwoStates_SingleQubit,
DistinguishStates_MultiQubit,
BoolArrayAsKetState,
IntArrayAsStateName,
CheckOracleImplementsFunction;
}

namespace KatasUtils {
import Std.Arrays.*;
import Std.Convert.*;
import Std.Diagnostics.*;
import Std.Math.*;
import Std.Random.*;

/// # Summary
/// Given two operations, checks whether they act identically (including global phase) for all input states.
Expand All @@ -15,8 +33,8 @@ namespace Microsoft.Quantum.Katas {
operation CheckOperationsAreEqualStrict(
inputSize : Int,
op : (Qubit[] => Unit is Adj + Ctl),
reference : (Qubit[] => Unit is Adj + Ctl))
: Bool {
reference : (Qubit[] => Unit is Adj + Ctl)
) : Bool {
Fact(inputSize > 0, "`inputSize` must be positive");
let controlledOp = register => Controlled op(register[...0], register[1...]);
let controlledReference = register => Controlled reference(register[...0], register[1...]);
Expand All @@ -30,8 +48,8 @@ namespace Microsoft.Quantum.Katas {
operation CheckOperationsEquivalenceOnZeroState(
op : (Qubit[] => Unit),
reference : (Qubit[] => Unit is Adj),
inputSize : Int)
: Bool {
inputSize : Int
) : Bool {
Fact(inputSize > 0, "`inputSize` must be positive");
use target = Qubit[inputSize];
op(target);
Expand All @@ -57,8 +75,7 @@ namespace Microsoft.Quantum.Katas {
within {
H(control);
initialState(target);
}
apply {
} apply {
Controlled op([control], target);
Adjoint Controlled reference([control], target);
}
Expand All @@ -77,8 +94,8 @@ namespace Microsoft.Quantum.Katas {
operation CheckOperationsEquivalenceOnZeroStateStrict(
op : (Qubit[] => Unit is Adj + Ctl),
reference : (Qubit[] => Unit is Adj + Ctl),
inputSize : Int)
: Bool {
inputSize : Int
) : Bool {
Fact(inputSize > 0, "`inputSize` must be positive");
CheckOperationsEquivalenceOnInitialStateStrict(qs => (), op, reference, inputSize)
}
Expand All @@ -91,8 +108,8 @@ namespace Microsoft.Quantum.Katas {
registerSize : Int,
initialState : Qubit[] => Unit,
op : Qubit[] => Unit,
reference : Qubit[] => Unit)
: Unit {
reference : Qubit[] => Unit
) : Unit {
{
use register = Qubit[registerSize];
initialState(register);
Expand Down Expand Up @@ -142,10 +159,12 @@ namespace Microsoft.Quantum.Katas {

internal operation EntangleRegisters(
control : Qubit[],
target : Qubit[]) : Unit is Adj + Ctl {
target : Qubit[]
) : Unit is Adj + Ctl {
Fact(
Length(control) == Length(target),
$"The length of qubit registers must be the same.");
$"The length of qubit registers must be the same."
);

for index in IndexRange(control) {
H(control[index]);
Expand All @@ -158,7 +177,7 @@ namespace Microsoft.Quantum.Katas {
/// Prepare a random uneven superposition state on the given qubit array.
operation PrepDemoState(qs : Qubit[]) : Unit {
Fact(Length(qs) <= 4, "States with 5 qubits or more are not supported.");
let probs = [0.36, 0.25, 1. / 3., 1. / 5.][... Length(qs) - 1];
let probs = [0.36, 0.25, 1. / 3., 1. / 5.][...Length(qs) - 1];
for (q, prob) in Zipped(qs, probs) {
Ry(ArcCos(Sqrt(prob)) * 2.0, q);
}
Expand All @@ -171,14 +190,15 @@ namespace Microsoft.Quantum.Katas {
statePrep : ((Qubit, Int) => Unit is Adj),
testImpl : (Qubit => Bool),
stateNames : String[],
preserveState : Bool) : Bool {
preserveState : Bool
) : Bool {

let nTotal = 100;
let nStates = 2;
mutable misclassifications = [0, size=nStates];
mutable misclassifications = [0, size = nStates];

use q = Qubit();
for _ in 1 .. nTotal {
for _ in 1..nTotal {
// get a random bit to define whether qubit will be in a state corresponding to true return (1) or to false one (0)
// state = 0 false return
// state = 1 true return
Expand Down Expand Up @@ -207,7 +227,7 @@ namespace Microsoft.Quantum.Katas {
}

mutable totalMisclassifications = 0;
for i in 0 .. nStates - 1 {
for i in 0..nStates - 1 {
if misclassifications[i] != 0 {
set totalMisclassifications += misclassifications[i];
Message($"Misclassified {stateNames[i]} as {stateNames[1 - i]} in {misclassifications[i]} test runs.");
Expand All @@ -226,7 +246,8 @@ namespace Microsoft.Quantum.Katas {
statePrep : ((Qubit[], Int, Double) => Unit is Adj),
testImpl : (Qubit[] => Int),
preserveState : Bool,
stateNames : String[]) : Bool {
stateNames : String[]
) : Bool {

let nTotal = 100;
// misclassifications will store the number of times state i has been classified as state j (dimension nStates^2)
Expand All @@ -235,7 +256,7 @@ namespace Microsoft.Quantum.Katas {
mutable unknownClassifications = [0, size = nStates];

use qs = Qubit[nQubits];
for _ in 1 .. nTotal {
for _ in 1..nTotal {
// get a random integer to define the state of the qubits
let state = DrawRandomInt(0, nStates - 1);
// get a random rotation angle to define the exact state of the qubits
Expand All @@ -252,8 +273,7 @@ namespace Microsoft.Quantum.Katas {
if ans != state {
set misclassifications w/= ((state * nStates) + ans) <- (misclassifications[(state * nStates) + ans] + 1);
}
}
else {
} else {
// classification result is an invalid state index - file it separately
set unknownClassifications w/= state <- (unknownClassifications[state] + 1);
}
Expand All @@ -273,8 +293,8 @@ namespace Microsoft.Quantum.Katas {
}

mutable totalMisclassifications = 0;
for i in 0 .. nStates - 1 {
for j in 0 .. nStates - 1 {
for i in 0..nStates - 1 {
for j in 0..nStates - 1 {
if misclassifications[(i * nStates) + j] != 0 {
set totalMisclassifications += misclassifications[i * nStates + j];
Message($"Misclassified {stateNames[i]} as {stateNames[j]} in {misclassifications[(i * nStates) + j]} test runs.");
Expand All @@ -289,22 +309,22 @@ namespace Microsoft.Quantum.Katas {
}

// Helper function to convert a boolean array to its ket state representation
function BoolArrayAsKetState (bits : Bool[]) : String {
function BoolArrayAsKetState(bits : Bool[]) : String {
mutable stateName = "|";
for i in 0 .. Length(bits) - 1 {
for i in 0..Length(bits) - 1 {
set stateName += (bits[i] ? "1" | "0");
}

return stateName + "⟩";
}

// Helper function to convert an array of bit strings to its ket state representation
function IntArrayAsStateName (
function IntArrayAsStateName(
qubits : Int,
bitStrings : Bool[][]
) : String {
mutable statename = "";
for i in 0 .. Length(bitStrings) - 1 {
for i in 0..Length(bitStrings) - 1 {
if i > 0 {
set statename += " + ";
}
Expand All @@ -315,25 +335,25 @@ namespace Microsoft.Quantum.Katas {
}

/// # Summary
/// Given a marking oracle acting on N inputs, and a classical function acting on N bits,
/// Given a marking oracle acting on N inputs, and a classical function acting on N bits,
/// checks whether the oracle effect matches that of the function on every classical input.
operation CheckOracleImplementsFunction (
N : Int,
oracle : (Qubit[], Qubit) => Unit,
operation CheckOracleImplementsFunction(
N : Int,
oracle : (Qubit[], Qubit) => Unit,
f : Bool[] -> Bool
) : Bool {
let size = 1 <<< N;
use (input, target) = (Qubit[N], Qubit());
for k in 0 .. size - 1 {
for k in 0..size - 1 {
// Prepare k-th bit vector
let binaryLE = IntAsBoolArray(k, N);

// "binary" is little-endian notation, so the second vector tried has qubit 0 in state 1 and the rest in state 0
ApplyPauliFromBitString(PauliX, true, binaryLE, input);

// Apply the operation
oracle(input, target);

// Calculate the expected classical result
let val = f(binaryLE);

Expand All @@ -357,5 +377,5 @@ namespace Microsoft.Quantum.Katas {
}
}
return true;
}
}
}
6 changes: 3 additions & 3 deletions katas/content/complex_arithmetic/Common.qs
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
namespace Kata.Verification {
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Random;
open Microsoft.Quantum.Convert;
import Std.Math.*;
import Std.Random.*;
import Std.Convert.*;

operation DrawRandomComplex() : Complex {
// Generates a random complex number.
Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
namespace Kata {
open Microsoft.Quantum.Math;
import Std.Math.*;

function ComplexToComplexPolar(x : Complex) : ComplexPolar {
// Implement your solution here...
return ComplexPolar(0., 0.);
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata {
open Microsoft.Quantum.Math;
import Std.Math.*;

function ComplexToComplexPolar(x : Complex) : ComplexPolar {
let (a, b) = (x.Real, x.Imag);
Expand Down
Original file line number Diff line number Diff line change
@@ -1,15 +1,15 @@
namespace Kata.Verification {
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Math;
import Std.Convert.*;
import Std.Math.*;

@EntryPoint()
operation CheckSolution() : Bool {
for _ in 0 .. 24 {
operation CheckSolution() : Bool {
for _ in 0..24 {
let x = DrawRandomComplex();

let expected = ComplexAsComplexPolar(x);
let actual = Kata.ComplexToComplexPolar(x);

if not ComplexPolarEqual(expected, actual) {
Message("Incorrect");
Message($"For x = {ComplexAsString(x)} expected return {ComplexPolarAsString(expected)}, actual return {ComplexPolarAsString(actual)}.");
Expand All @@ -20,4 +20,4 @@ namespace Kata.Verification {
Message("Correct!");
return true;
}
}
}
4 changes: 2 additions & 2 deletions katas/content/complex_arithmetic/cartesian_to_polar/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,8 @@ Return the polar representation of $x = re^{i\theta}$, that is, the distance fro

A video explanation of this conversion can be found [here](https://www.youtube.com/watch?v=8RasCV_Lggg).

Q# namespace `Microsoft.Quantum.Math` includes a useful function `ArcTan2()`.
Q# namespace `Std.Math` includes a useful function `ArcTan2()`.

</details>

> Q# function `ComplexAsComplexPolar` from `Microsoft.Quantum.Math` namespace converts a complex number of type `Complex` to a complex number of type `ComplexPolar`. For educational purposes, try to do this task by hand.
> Q# function `ComplexAsComplexPolar` from `Std.Math` namespace converts a complex number of type `Complex` to a complex number of type `ComplexPolar`. For educational purposes, try to do this task by hand.
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata {
open Microsoft.Quantum.Math;
import Std.Math.*;

function ComplexAdd(x : Complex, y : Complex) : Complex {
// Extract real and imaginary components of the inputs.
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata {
open Microsoft.Quantum.Math;
import Std.Math.*;

function ComplexAdd(x : Complex, y : Complex) : Complex {
Complex(x.Real + y.Real, x.Imag + y.Imag)
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata.Verification {
open Microsoft.Quantum.Math;
import Std.Math.*;

@EntryPoint()
operation CheckSolution() : Bool {
Expand Down
2 changes: 1 addition & 1 deletion katas/content/complex_arithmetic/complex_addition/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,4 +14,4 @@ Adding complex numbers is just like adding polynomials. Add components of the sa
A video explanation of adding complex numbers can be found [here](https://www.youtube.com/watch?v=SfbjqVyQljk).
</details>

> Q# function `PlusC` from `Microsoft.Quantum.Math` namespace adds two complex numbers. For educational purposes, try to do this task by hand.
> Q# function `PlusC` from `Std.Math` namespace adds two complex numbers. For educational purposes, try to do this task by hand.
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata {
open Microsoft.Quantum.Math;
import Std.Math.*;

function ComplexConjugate(x : Complex) : Complex {
// Implement your solution here...
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata {
open Microsoft.Quantum.Math;
import Std.Math.*;

function ComplexConjugate(x : Complex) : Complex {
Complex(x.Real, -x.Imag)
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata.Verification {
open Microsoft.Quantum.Math;
import Std.Math.*;

function ComplexConjugate_Reference(x : Complex) : Complex {
// Return the complex conjugate
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata {
open Microsoft.Quantum.Math;
import Std.Math.*;

function ComplexDiv(x : Complex, y : Complex) : Complex {
// Implement your solution here...
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata {
open Microsoft.Quantum.Math;
import Std.Math.*;

function ComplexDiv(x : Complex, y : Complex) : Complex {
let (a, b) = (x.Real, x.Imag);
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata.Verification {
open Microsoft.Quantum.Math;
import Std.Math.*;

@EntryPoint()
operation CheckSolution() : Bool {
Expand Down
2 changes: 1 addition & 1 deletion katas/content/complex_arithmetic/complex_division/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,4 +12,4 @@ A video explanation of complex division can be found [here](https://www.youtube.

</details>

> Q# function `DividedByC` from `Microsoft.Quantum.Math` namespace divides two complex numbers. For educational purposes, try to do this task by hand.
> Q# function `DividedByC` from `Std.Math` namespace divides two complex numbers. For educational purposes, try to do this task by hand.
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
namespace Kata {
open Microsoft.Quantum.Math;
import Std.Math.*;

function ComplexExponent(x : Complex) : Complex {
// Implement your solution here...
Expand Down
Loading

0 comments on commit efeac5c

Please sign in to comment.