Skip to content

RNA-Sequencing data differential expression analysis pipeline. Performs: genome coverage (via bedtools and HTSeq), generates Circos code and plots, differential expression (via DESeq and NOISeq), structural variant detection (e.g. fusion genes, via SVDetect) and differential exon usage (via DEXSeq).

Notifications You must be signed in to change notification settings

mint1234/rna-seq-diff-exprn

 
 

Repository files navigation

rna-seq-diff-exprn (aka RSDE)

RNA-sequencing differential expression analysis pipeline.

Unlike DNA, RNA cannot be sequenced directly because it is less stable. RNA-sequencing (Nagalakshmi et al, Science, 2008, doi:10.1126/science.1158441) is a method of the unstable ribonucleic acid (RNA) into "coding-DNA" (cDNA) products that can be sequenced by a sequencing machine such as Illumina Hi-Seq 2000.

Performs: genome coverage (via bedtools and HTSeq), generates Circos code and plots, differential expression (via DESeq and NOISeq), structural variant detection (e.g. fusion genes, via SVDetect) and differential exon usage (via DEXSeq).

How to run the example code

To run the example, go to the folder where you saved rna-seq-diff-exprn. In my case, this is /Users/olgabotvinnik/workspace/rna-seq-diff-exprn/. Then, perform this command:

scripts/pipeline.sh test-results test-data/conditions_chr9.tab test-data/hg19_ucsc_genes.gtf test-data/hg19_ucsc_genes_chr9_dexseq.gtf test-data/hg19_ucsc_genes.bed test-data/hg19_id_symbol.txt test-data/human.hg19.genome test-data/karyotype/karyotype.human.hg19.txt test-data/hg19_gene_density_1e5bins.txt test-data/hg19_gc_content_circos_chr9.txt 2

Dependencies

Dependencies (what you should already have installed, or need to install to use this RNA-Sequencing analysis software) Note: This may seem like a lot, but if you are in biomedical research, it is likely that the servers at your institution already have most of these installed.

  1. Python 2.7 (for RSeQC and HTSeq, #2 and #3) http://www.python.org/getit/releases/2.7/

    1. Cython - required for pybedtools below http://www.cython.org/#download
    2. pybedtools - required for HTSeq http://packages.python.org/pybedtools/
    3. HTSeq - Another method of calculating gene expression counts, in addition to BEDTools Coverage. http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html Installed via python2.7, i.e. instead of typing python setup.py install Say: python2.7 setup.py install
  2. RSeQC, RNA-Sequencing Quality Control software Version 2.3 or later, http://code.google.com/p/rseqc/downloads/list

  3. BEDTools, version 2.16.2 or greater http://code.google.com/p/bedtools/downloads/list

  4. Perl 5.8.x or newer (for Circos, #6) Linux and Mac users: http://www.perl.org/get.html Windows users: http://strawberryperl.com/

  5. Circos, version 0.60 or later (for plotting genome coverage data) Note: Circos has a number of Perl package dependencies that take some time to make sure they are all properly installed on your system. http://circos.ca/software/download/circos Aliased such that circos will run the program On my machine, this is accomplished by adding this line to the file in /Users/olgabotvinnik/.bashrc, or my ~/.bashrc file: PATH=$PATH:/usr/bin/circos/bin ; export PATH Which means that when you run commands, the computer will know to look in /usr/bin/circos/bin for potential executable files. /usr/bin/circos Is where I personally installed Circos. On the server that I use, for example, it is installed in: /share/apps/circos-0.60/bin So then my ~/.bashrc file on the server looks like: PATH=$PATH:/share/apps/circos-0.60/bin ; export PATH

  6. R, 2.14.2 or later http://www.r-project.org/

    1. DESeq For differential expression analysis http://www-huber.embl.de/users/anders/DESeq/
    2. NOISeq Another type of differential expression analysis software http://bioinfo.cipf.es/noiseq/doku.php?id=downloads
    3. DEXSeq Differential exon usage analysis http://bioconductor.org/packages/release/bioc/html/DEXSeq.html

Other useful functions

wig_to_circos.R

wig_to_circos.R: Converts .wig files (genome browser-type files) to files compatible with the Cirocs graphing format

Usage

scripts/wig_to_circos.R [input .wig file] [output circos file (any extension you want, .txt is fine)]

Example

scripts/wig_to_circos.R test-data/hg19_gc1000Base.txt test-data/hg19_gc_content_circos.txt

get_gene_density.R

get_gene_density.R: Using a knownCanonical format file, which looks like:

#chrom  chromStart  chromEnd  clusterId transcript  protein
chr1  11873 14409 1 uc010nxq.1  uc010nxq.1
chr1  14361 19759 2 uc009viu.3  uc009viu.3
chr1  14406 29370 3 uc009viw.2  uc009viw.2
chr1  34610 36081 4 uc001aak.3  uc001aak.3
chr1  69090 70008 5 uc001aal.1  uc001aal.1
chr1  136697  140566  6 uc001aam.4  uc001aam.4
chr1  321083  321115  7 uc001aaq.2  uc001aaq.2
chr1  321145  321207  8 uc001aar.2  uc001aar.2
chr1  322036  326938  9 uc009vjk.2  uc009vjk.2

Find the number of genes per 1 megabase and reports the gene density, for example:

#chr  chrStart  chrEnd  density
chr1 11873 1011872 0.00062000062000062
chr1 1011873 2011872 0.000585000585000585
chr1 2011873 3011872 0.00058000058000058
chr1 3011873 4011872 0.000592000592000592
chr1 4011873 5011872 0.000394000394000394
chr1 5011873 6011872 0.0002000002000002
chr1 6011873 7011872 0.00025000025000025
chr1 7011873 8011872 0.000254000254000254
chr1 8011873 9011872 0.000179000179000179

Note: the smaller window you choose, the longer this will take and the stranger densities you will encounter. Keep in mind the average gene size for your species. For example, in humans, the average gene size is ~3,000bp, so I used 100,000bp (1e5) as the range, about 100-fold more than the average gene size.

Usage

scripts/get_gene_density.R [knownCanonical file] [output file] [base window upon which to calculate density]

Example

scripts/get_gene_density.R test-data/hg19_ucsc_knownCanonical.tab test-data/hg19_gene_density_1e5bins.txt 1e5

merge_columns.sh

merge_columns.sh: Merges columns of many files. The specific use case here is to take in a transcriptID-geneSymbol file, and many transcript counts files, and output a table such as:

transcriptID  geneSymbol  LNCaP_1 LNCaP_2 LNCaP_3 LNCaP_4 PrEC_1 PrEC_2
uc004blr.3  TTLL11  397 0 456 450 298 207 1744  838
uc004blt.1  TTLL11  78  0 92  98  76  53  356 166
uc004blu.1  TTLL11  78  0 92  98  76  53  356 166
uc011lyl.2  TTLL11  397 0 456 450 298 207 1744  838
uc011lym.1  TTLL11  71  0 88  87  61  37  322 147

Usage

scripts/merge_columns.sh [two-column files, names are comma-delimited] [column names, comma-delimited] [output file]

Example

scripts/merge_columns.sh test-data/hg19_id_symbol.txt,test-results/expression/bedtools/LNCaP_1/bedtools_name_count.txt,test-results/expression/bedtools/LNCaP_2/bedtools_name_count.txt,test-results/expression/bedtools/LNCaP_3/bedtools_name_count.txt,test-results/expression/bedtools/LNCaP_4/bedtools_name_count.txt,test-results/expression/bedtools/PrEC_1/bedtools_name_count.txt,test-results/expression/bedtools/PrEC_2/bedtools_name_count.txt transcriptID,geneSymbol,LNCaP_1,LNCaP_2,LNCaP_3,LNCaP_4,PrEC_1,PrEC_2 test-results/expression/bedtools/bedtools_gene_counts_table.tab

About

RNA-Sequencing data differential expression analysis pipeline. Performs: genome coverage (via bedtools and HTSeq), generates Circos code and plots, differential expression (via DESeq and NOISeq), structural variant detection (e.g. fusion genes, via SVDetect) and differential exon usage (via DEXSeq).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 83.0%
  • Shell 15.8%
  • Python 1.2%