此次用C语言实现的协程切换程序被称作ccoroutine
。
ccoroutine
的主要特点是强大和轻量——同线程和进程相比,其拥有更大的并发上限(参与并发的协程所需内存资源更少,线程运行栈分配参考值为4Mib,ccoroutine协程为3Kib);另外,ccoroutine
的核心逻辑代码还未达800行,这归功于开发过程中的持续优化(保证阅读性前提下)。
话说回来,ccoroutine
潜在瓶颈(文档中有所提及)也困扰着我,希望真正的饱学之士路过时能帮忙继续提升他。
src
,核心包含了ccoroutine
的核心代码。
src
中的co_yield()
, co_yield_from()
, co_send()
以及co_loop()
是被python
中yield
, yield from
, generator.send()
, asyncio.loop()
的轻量优雅打动后编写的。也就是说,ccoroutine
用C语言实现了python
的yield
(及其他)机制。
注:co_yield()
和co_send()
可以支撑协程切换(特适用于异步情形),co_yield_from()
可用于支撑对协程的同步(co_yield_from()
本身亦可是异步的),co_loop()
用作协程调度,这些朴实功能的结合在实际开发中很受用。
ccoroutine
现使用scons
进行工程构建和管理(最初为make
)。ccoroutine
已在src
中内置了构建其静态库的SConscript
。也就是说,应用程序SConstruct
中的语句
lncc = SConscript('~/src/SConscript')
即可将ccoroutine
静态库的路径写到变量lncc
中。可参考例子experiences/loop_e
。
context
,支持协程切换的实现,包括汇编和调用第三方库ucontext的实现。
experiences
,体验ccoroutine
所实现协程切换机制的例子,包括co_yield
, co_send
, co_yield_from
and co_loop
。
doc
,experiences
的开发笔记(中文)。
就运行 20000000 个简单型协程体验下吧。其中 10000000 个协程来自experiences/loop_e/loop_e.c
中的_co_fn
,他通过co_yield()
和co_send()
实现协程切换;另外 10000000 协程来自experiences/loop_e/loop_e.c
中的_co_yield_from_fn
,他们被分别用来同步协程_co_fn
的终止。
在experiences/loop_e/
下通过命令
scons -Q
运行构建loop_e
的脚本SConstruct
,然后运行loop_e
[a@b loop_e]$ scons -Q
...
[a@b loop_e]$
[a@b loop_e]$ ./loop_e 2>o.txt
[a@b loop_e]$ vi o.txt
1 '_co_yield_from_fn' sync '_co_fn' terminated. '_co_fn' return: 012
...
9999999 '_co_yield_from_fn' sync '_co_fn' terminated. '_co_fn' return: 012
10000000 '_co_yield_from_fn' sync '_co_fn' terminated. '_co_fn' return: 012
可见,co_yield_from()
在同步子协程co_fn
运行的同时,还支持着整个在协程层面的并发性。
再打开一个终端观察loop_e
运行情况。
top - 16:41:24 up 3 days, 8:02, 3 users, load average: 0.49, 0.24, 0.15
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 3.6 us, 4.5 sy, 0.0 ni, 91.5 id, 0.1 wa, 0.0 hi, 0.3 si, 0.0 st
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
18036 lxr 20 0 4348 352 276 R 28.2 0.0 0:12.37 loop_e
协程调度本身属于CPU密集型任务,由于调度协程中无如超时等待异步(如select)机制且协程并发量大,所以loop_e
的CPU一定会高。考虑用户体验,ccoroutine
在每调度一单元量的协程后就主动放弃CPU,当协程来自实际应用时(网络IO),可将主动放弃CPU的语句去除。
另外,当协程数量和协程运行时间同时大幅度增加时,ccoroutine
所占内存资源也会随之上升。对于像'_co_fn'这样简单的协程,ccoroutine
中边运行边创建协程 + 内存即用即释放的机制
可以使其并发量无上限。
the coroutine switching implement in C-language called ccoroutine
this time.
ccoroutine
is powerful and lightweight, it spports much more concurrency upper limit than thread or process, and it‘s major routines always less than 800 lines.
the potential bottleneck of ccoroutine
besets me at the same time, so goddess hopes more knowledgeable guys just like you can continue to improve it.
src
, major C-routines for ccoroutine
.
co_yield()
, co_yield_from()
, co_send()
and co_loop()
implemented in src
, they are just like the yield
, yield from
, generator.send()
, asyncio.loop()
in python respectively. In other words, ccoroutine
is the program which implement python's yield
(and so on) in C language.
the SConscript
buildin src
used to build ccoroutine library. using
lncc = SConscript('../../src/SConscript')
to get the library path by SConstruct
in experiences/applications, say the SConstruct
in experiences/loop_e
.
context
, the coroutine-switching supporters, including assembly and ucontext.
experiences
, namely examples for ccoroutine
, co_yield
, co_send
, co_yield_from
and co_loop
included.
doc
, development-diary for ccoroutine
in chinese.
let us run 20000000 simple coroutines such as _co_yield_from_fn
&& _co_fn
in loop_e
on a server-computer to experience ccoroutine
.
10000000 coroutines(_co_fn) switching, other 10000000 coroutines(_co_yield_from_fn) used to synchronize the former 10000000 coroutines to terminate respectively.
running scons -Q
to build the target program loop_e
.
[a@b loop_e]$ scons -Q
...
[a@b loop_e]$
[a@b loop_e]$ ./loop_e 2>o.txt
[a@b loop_e]$ vi o.txt
1 '_co_yield_from_fn' sync '_co_fn' terminated. '_co_fn' return-value: 012
...
9999999 '_co_yield_from_fn' sync '_co_fn' terminated. '_co_fn' return-value: 012
10000000 '_co_yield_from_fn' sync '_co_fn' terminated. '_co_fn' return-value: 012
start 'top' on another terminal when loop_e
running.
top - 16:41:24 up 3 days, 8:02, 3 users, load average: 0.49, 0.24, 0.15
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 3.6 us, 4.5 sy, 0.0 ni, 91.5 id, 0.1 wa, 0.0 hi, 0.3 si, 0.0 st
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
18036 lxr 20 0 4348 352 276 R 28.2 0.0 0:12.37 loop_e
the memory consumption will increase more when the corotines' number and running-time growth, of course.