Skip to content

ml-and-video/deep-dream-with-segmentation

 
 

Repository files navigation

Image Segmentation + Style Transfer + Deep Dream = 꿈속의 꿈

Modulabs DLC - CreativeAI VideoLab 한정협, 김준화, 박석


Project Details

For this project, we are inspired from 'Deep Dream' by Alexander Mordvintsev https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream

1. 어떤 것을 하고 싶은지? 주제

  • Image Segmentation + Style Transfer + Deep Dream = 꿈속의 꿈
  • 사람과 배경이 있는 이미지에서 배경에만 Style Transfer 와 Deep Dream 을 적용하여, 사람 영역의 이미지가 괴기스럽게 변하는 단점을 보완하여 좀 더 자연스러운 이미지를 Generation하고자 함.

2. 어떻게 만들 것인지 : 어떤 알고리즘을 사용하고 싶고, 어떤 데이터셋을 이용할 것인가?

  1. Image Segmentation (DeepLab V3+) : https://github.com/bonlime/keras-deeplab-v3-plus
  2. Style Transfer (Neural Transfer using PyTorch) : https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
  3. Deep Dream (GoogLeNet) : https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream

3. 그렇게 생각하게 된 이유는?

  • 원본이미지 → "Image Segmentation" → "사람 영역 One-Hot Vector", "배경 영역 One-Hot Vector"
  • 원본이미지 → "Style Transfer" → 특정 Style이 적용된 이미지
  • 특정 Style이 적용된 이미지 → "Deep Dream" → 몽환적 분위기 이미지
  • 몽환적 분위기 이미지 → "Additional Image Processing" → 몽환적 분위기 이미지 + 원본 사람 영역이 치환된 좀 더 자연스러운 이미지

4. 사용할 데이터셋 : 작업의 특징을 고려한 데이터셋

  1. Image Segmentation (DeepLab V3+) : COCO & JFT
  2. Style Transfer (Neural Transfer using PyTorch) : vgg19
  3. Deep Dream (GoogLeNet) : Imagenet

Instructions

To setup our project environment to run the code in this repository, follow the instructions below.

  1. Install Git

  2. Install Anaconda

  3. Clone this repository

git clone https://github.com/parksurk/deep-dream-with-segmentation
  1. Create (and activate) a new environment with Python 3.6.
    • Linux or Mac:
      conda create --name deepdream python=3.6
      source activate deepdream
      
    • Windows:
      conda create --name deepdream python=3.6
      activate deepdream
      
  2. Install Python Scientific Libraries
pip install jupyter numpy tensorflow pillow keras matplotlib opencv-python
  1. Install RISE - Jupyter notebook slideshow library (Optional for Presenter)
conda install -c conda-forge rise
  1. Create an IPython kernel for the kaggle environment. (Skip if you done already)
pip install ipykernel
python -m ipykernel install --user --name deepdream --display-name "deepdream"
  1. Run Jupyter Notebook
jupyter notebook
  1. Click .ipynb on root directory

  2. Before running code in a notebook, change the kernel to match the 'deepdream' environment by using the drop-down Kernel menu.

About

No description or website provided.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.2%
  • Python 0.8%