Matching & Localization algorithmic workflow of Visual Localization pipeline (Summer 2023, Research at the ETRI)
git clone https://github.com/mnseong/VL-matching-localization-pipeline.git
Please refer to our directory structure
VL-matching-localization-pipeline
├─ datasets
│ └─my_dataset
│ ├─ global_features
│ ├─ local_features
│ ├─ mapping
│ ├─ query
│ └─ map_plus_query # kapture_merge.py with mapping/query inputs
├─ mapping
│ ├─ kapture_pipeline_mapping.py
│ └─ pipeline_import_paths.py
├─ localization
│ ├─ kapture_pipeline_localize.py
│ └─ pipeline_import_paths.py
└─ workspace
├─ my_dataset # This directory is copy from dataset, It will be used to workspace.
└─ run_my_dataset.sh # run script
pip install -r requirements.txt
You can use the pipeline in "/workspace".
cd workspace
./run_virtual.sh # example command for virtual_gallery dataset
Go to results directory.
cd virtual/virtual_gallery_tutorial # example command for virtual_gallery dataset
# matching
colmap gui \
--database_path ./colmap-sfm/r2d2_500/AP-GeM-LM18_top5/colmap.db \
--image_path ./mapping/sensors/records_data \
--import_path ./colmap-sfm/r2d2_500/AP-GeM-LM18_top5/reconstruction/
# localization
colmap gui \
--database_path ./colmap-localization/r2d2_500/AP-GeM-LM18_top5/AP-GeM-LM18_top5/colmap_localized/colmap.db \
--image_path query/sensors/records_data \
--import_path ./colmap-localization/r2d2_500/AP-GeM-LM18_top5/AP-GeM-LM18_top5/colmap_localized/reconstruction/
Benchmarking Image Retrieval for Visual Localization (3DV 24 Nov 2020)
Robust Image Retrieval-based Visual Localization using Kapture (arXiv 27 Jul 2020)