-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval_city.py
132 lines (112 loc) · 4.95 KB
/
val_city.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import time
from tqdm import tqdm
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.mixed_precision import experimental as mixed_precision
from prettytable import PrettyTable
from datasets.cityscapes import Cityscapes
from models.nets import deeplabv3plus_resnet
from metrics.loss import Total_Loss
config = {'batch_size': 1,
'input_shape': (1024, 2048, 3), # (1024, 2048, 3),
'num_classes': 20,
'lr': 5e-3,
'epochs': 500,
'backbone': 'resnet18',
'output_stride': 16,
# 'model_path': 'logs/resnet18backbone/ep166-loss0.099-val_loss0.280-mean_iounan-pixel_acc0.965-val_mean_iounan-val_pixel_acc0.918.h5',
'model_path': 'logs/resnet18backbone_os16_adam/ep137-loss0.090-val_loss0.307-pixel_acc0.968-val_pixel_acc0.914.h5',
}
if __name__ == '__main__':
# policy = mixed_precision.Policy('mixed_float16')
# mixed_precision.set_policy(policy)
# load data
train_params = {'root': 'G:\Datasets\cityscapes',
'split': 'train',
'mode': 'fine',
'batch_size': config['batch_size'],
'crop_size': config['input_shape'][0],
'brightness': 0.5,
'contrast': 0.5,
'saturation': 0.5,
'is_plot': False,
'target_type': 'semantic'}
val_params = {'root': 'G:\Datasets\cityscapes',
'split': 'val',
'mode': 'fine',
'input_size': (config['input_shape'][0], config['input_shape'][1]),
'batch_size': config['batch_size'],
'is_plot': False,
'orignal_size': True,
'target_type': 'semantic'}
train_dataset = Cityscapes(**train_params)
val_dataset = Cityscapes(**val_params)
print(val_dataset.class_name)
# model
inputs = Input(shape=config['input_shape'])
model = deeplabv3plus_resnet(inputs, use_bn=True, use_bias=False,
num_classes=config['num_classes'],
output_stride=config['output_stride'],
backbone=config['backbone'])
# model.summary()
model.load_weights(config['model_path'], by_name=True, skip_mismatch=True)
# compile
total_loss = Total_Loss(config['num_classes'], val_dataset.class_name, verbose=False)
model.compile(loss=total_loss.scc_loss,
optimizer=Adam(lr=config['lr']),
metrics=[total_loss.pixel_acc])
# train
metrics = model.evaluate(val_dataset, verbose=1)
print(metrics) # pixel acc: 94.48
non_ignore_cls = 19
time_list = []
zero_m = np.zeros((20, 20))
Confusion_Metrics = tf.Variable(zero_m, dtype=tf.int32)
iou_table = PrettyTable()
iou_table.field_names = ["class index", "class name", "IoU"]
for val_data in tqdm(val_dataset):
val_image, val_gt = val_data
# print('val_image: ', val_image.shape)
# print('val_ground_truth:', val_gt.shape)
start_time = time.time()
y_pred = model.predict(val_image)
end_time = time.time()
time_list.append(np.round((end_time-start_time)*1000, 2))
# print('val_prediction: ', y_pred.shape)
mask = (val_gt != non_ignore_cls) # ignore label 255 - also 19
gt_masked = tf.boolean_mask(val_gt, mask)
predict_masked = tf.boolean_mask(y_pred, mask)
predict_masked = tf.maximum(predict_masked, 1e-7)
# print(predict_masked.shape)
y_true = tf.reshape(gt_masked, [-1])
y_pred = tf.reshape(predict_masked, [-1, 20])
y_true_arg = y_true
y_pred_arg = tf.argmax(y_pred, 1)
# confusion matrix
cm = tf.math.confusion_matrix(y_true_arg, y_pred_arg, num_classes=20) # 20-1
Confusion_Metrics.assign_add(cm)
# print('cm: ', Confusion_Metrics.shape)
unions = []
intersections = []
ious = []
class_names = val_dataset.class_name
Confusion_Metrics = Confusion_Metrics[:non_ignore_cls, :non_ignore_cls]
print('cm: ', Confusion_Metrics.shape)
for i in range(non_ignore_cls):
# intersection = TP
# union = (TP + FP + FN)
inter = Confusion_Metrics[i][i]
union = tf.subtract(tf.add(tf.reduce_sum(Confusion_Metrics[i]), tf.reduce_sum(Confusion_Metrics[:][i])), Confusion_Metrics[i][i])
ious.append(tf.divide(inter, union))
name = class_names[i] if i!=19 else 'others'
iou_ = np.round(tf.divide(inter, union) *100, 2)
iou_table.add_row([i, name, iou_])
mious = np.round(tf.reduce_mean(ious).numpy()*100, 2)
iou_table.add_row([ '' , 'Mean IoU', mious])
print(iou_table)
print('Inference time: {} ms'.format(np.mean(time_list)))