Training: 768x768 random crop
validation: 1024x2048
pytorch version
Model | Batch Size | FLOPs | train/val OS | mIoU | overall accuracy | mean accuracy | FreqW accuracy | time (ms) |
---|---|---|---|---|---|---|---|---|
DeepLabV3Plus-MobileNet | 16 | 135G | 16/16 | 0.721 | 0.952 | 0.800 | 0.913 | 38.06 |
DeepLabV3Plus-ResNet50 | 16 | N/A | 16/16 | 0.763 | 0.957 | 0.840 | 0.921 | 22.02 |
DeepLabV3Plus-ResNet101 | 16 | N/A | 16/16 | 0.762 | 0.959 | 0.838 | 0.924 | 53.82 |
tensorflow version
Model | Batch Size | FLOPs | train/val OS | mIoU | overall accuracy | mean accuracy | FreqW accuracy | time (ms) |
---|---|---|---|---|---|---|---|---|
DeepLabV3Plus-ResNet18 | 8 | 16/16 | 0.648 | 0.9421 | 304.37 | |||
DeepLabV3Plus-ResNet18 | 4 | 8/8 | 0.649 | 0.945 | 352.53 |
-
different size error:
Invalid argument: padded_shape[0]=212 is not divisible by block_shape[0]=36
Solution:
set the same size of image for training and validation
-
number of samples % batchsize = 0
Invalid argument: slice index 17 of dimension 0 out of bounds.
-
Atrous Convolution
-
Deeplabv3+