Skip to content

Commit

Permalink
bump v1.1.0 (open-mmlab#2513)
Browse files Browse the repository at this point in the history
  • Loading branch information
Tau-J authored Jul 4, 2023
1 parent 1681afb commit 0855fca
Show file tree
Hide file tree
Showing 11 changed files with 132 additions and 36 deletions.
21 changes: 13 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -97,9 +97,12 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-

## What's New

- We are excited to release **YOLOX-Pose**, a One-Stage multi-person pose estimation model based on YOLOX. Checkout our [project page](/projects/yolox_pose/) for more details.
- We are glad to support 3 new datasets:
- (CVPR 2023) [Human-Art](https://github.com/IDEA-Research/HumanArt)
- (CVPR 2022) [Animal Kingdom](https://github.com/sutdcv/Animal-Kingdom)
- (AAAI 2020) [LaPa](https://github.com/JDAI-CV/lapa-dataset/)

![yolox-pose_intro](https://user-images.githubusercontent.com/26127467/226655503-3cee746e-6e42-40be-82ae-6e7cae2a4c7e.jpg)
![image](https://github.com/open-mmlab/mmpose/assets/13503330/c9171dbb-7e7a-4c39-98e3-c92932182efb)

- Welcome to [*projects of MMPose*](/projects/README.md), where you can access to the latest features of MMPose, and share your ideas and codes with the community at once. Contribution to MMPose will be simple and smooth:

Expand All @@ -110,18 +113,20 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-
- [RTMPose](/projects/rtmpose/)
- [YOLOX-Pose](/projects/yolox_pose/)
- [MMPose4AIGC](/projects/mmpose4aigc/)
- [Simple Keypoints](/projects/skps/)
- Become a contributors and make MMPose greater. Start your journey from the [example project](/projects/example_project/)

<br/>

- 2022-04-06: MMPose [v1.0.0](https://github.com/open-mmlab/mmpose/releases/tag/v1.0.0) is officially released, with the main updates including:
- 2023-07-04: MMPose [v1.1.0](https://github.com/open-mmlab/mmpose/releases/tag/v1.1.0) is officially released, with the main updates including:

- Release of [YOLOX-Pose](/projects/yolox_pose/), a One-Stage multi-person pose estimation model based on YOLOX
- Development of [MMPose for AIGC](/projects/mmpose4aigc/) based on RTMPose, generating high-quality skeleton images for Pose-guided AIGC projects
- Support for OpenPose-style skeleton visualization
- More complete and user-friendly [documentation and tutorials](https://mmpose.readthedocs.io/en/latest/overview.html)
- Support new datasets: Human-Art, Animal Kingdom and LaPa.
- Support new config type that is more user-friendly and flexible.
- Improve RTMPose with better performance.
- Migrate 3D pose estimation models on h36m.
- Inference speedup and webcam inference with all demo scripts.

Please refer to the [release notes](https://github.com/open-mmlab/mmpose/releases/tag/v1.0.0) for more updates brought by MMPose v1.0.0!
Please refer to the [release notes](https://github.com/open-mmlab/mmpose/releases/tag/v1.1.0) for more updates brought by MMPose v1.1.0!

## 0.x / 1.x Migration

Expand Down
19 changes: 12 additions & 7 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,10 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-

## 最新进展

- 我们发布了 **YOLOX-Pose**,一个基于 YOLOX 的 One-Stage 多人姿态估计模型。更多信息敬请参阅 YOLOX-Pose [项目主页](/projects/yolox_pose/)
- 我们支持了三个新的数据集:
- (CVPR 2023) [Human-Art](https://github.com/IDEA-Research/HumanArt)
- (CVPR 2022) [Animal Kingdom](https://github.com/sutdcv/Animal-Kingdom)
- (AAAI 2020) [LaPa](https://github.com/JDAI-CV/lapa-dataset/)

![yolox-pose_intro](https://user-images.githubusercontent.com/26127467/226655503-3cee746e-6e42-40be-82ae-6e7cae2a4c7e.jpg)

Expand All @@ -108,18 +111,20 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-
- [RTMPose](/projects/rtmpose/)
- [YOLOX-Pose](/projects/yolox_pose/)
- [MMPose4AIGC](/projects/mmpose4aigc/)
- [Simple Keypoints](/projects/skps/)
- 从简单的 [示例项目](/projects/example_project/) 开启您的 MMPose 代码贡献者之旅吧,让我们共同打造更好用的 MMPose!

<br/>

- 2022-04-06:MMPose [v1.0.0](https://github.com/open-mmlab/mmpose/releases/tag/v1.0.0) 正式发布了,主要更新包括:
- 2023-07-04:MMPose [v1.1.0](https://github.com/open-mmlab/mmpose/releases/tag/v1.1.0) 正式发布了,主要更新包括:

- 发布了 [YOLOX-Pose](/projects/yolox_pose/),一个基于 YOLOX 的 One-Stage 多人姿态估计模型
- 基于 RTMPose 开发的 [MMPose for AIGC](/projects/mmpose4aigc/),生成高质量骨架图片用于 Pose-guided AIGC 项目
- 支持 OpenPose 风格的骨架可视化
- 更加完善、友好的 [文档和教程](https://mmpose.readthedocs.io/zh_CN/latest/overview.html)
- 支持新数据集:Human-Art、Animal Kingdom、LaPa。
- 支持新的配置文件风格,支持 IDE 跳转和搜索。
- 提供更强性能的 RTMPose 模型。
- 迁移 3D 姿态估计算法。
- 加速推理脚本,全部 demo 脚本支持摄像头推理。

请查看完整的 [版本说明](https://github.com/open-mmlab/mmpose/releases/tag/v1.0.0) 以了解更多 MMPose v1.0.0 带来的更新!
请查看完整的 [版本说明](https://github.com/open-mmlab/mmpose/releases/tag/v1.1.0) 以了解更多 MMPose v1.1.0 带来的更新!

## 0.x / 1.x 迁移

Expand Down
3 changes: 1 addition & 2 deletions docs/en/dataset_zoo/2d_animal_keypoint.md
Original file line number Diff line number Diff line change
Expand Up @@ -480,8 +480,7 @@ mmpose
</div>

```bibtex
@InProceedings{
Ng_2022_CVPR,
@inproceedings{Ng_2022_CVPR,
author = {Ng, Xun Long and Ong, Kian Eng and Zheng, Qichen and Ni, Yun and Yeo, Si Yong and Liu, Jun},
title = {Animal Kingdom: A Large and Diverse Dataset for Animal Behavior Understanding},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
Expand Down
1 change: 1 addition & 0 deletions docs/en/faq.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ Detailed compatible MMPose and MMCV versions are shown as below. Please choose t

| MMPose version | MMCV/MMEngine version |
| :------------: | :-----------------------------: |
| 1.1.0 | mmcv>=2.0.1, mmengine>=0.8.0 |
| 1.0.0 | mmcv>=2.0.0, mmengine>=0.7.0 |
| 1.0.0rc1 | mmcv>=2.0.0rc4, mmengine>=0.6.0 |
| 1.0.0rc0 | mmcv>=2.0.0rc0, mmengine>=0.0.1 |
Expand Down
14 changes: 7 additions & 7 deletions docs/en/installation.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ We recommend that users follow our best practices to install MMPose. However, th

In this section we demonstrate how to prepare an environment with PyTorch.

MMPose works on Linux, Windows and macOS. It requires Python 3.7+, CUDA 9.2+ and PyTorch 1.6+.
MMPose works on Linux, Windows and macOS. It requires Python 3.7+, CUDA 9.2+ and PyTorch 1.8+.

If you are experienced with PyTorch and have already installed it, you can skip this part and jump to the [MMPose Installation](#install-mmpose). Otherwise, you can follow these steps for the preparation.

Expand Down Expand Up @@ -59,13 +59,13 @@ conda install pytorch torchvision cpuonly -c pytorch
```shell
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"
mim install "mmcv>=2.0.1"
```

Note that some of the demo scripts in MMPose require [MMDetection](https://github.com/open-mmlab/mmdetection) (mmdet) for human detection. If you want to run these demo scripts with mmdet, you can easily install mmdet as a dependency by running:

```shell
mim install "mmdet>=3.0.0"
mim install "mmdet>=3.1.0"
```

## Best Practices
Expand All @@ -89,7 +89,7 @@ pip install -v -e .
To use mmpose as a dependency or third-party package, install it with pip:

```shell
mim install "mmpose>=1.0.0"
mim install "mmpose>=1.1.0"
```

## Verify the installation
Expand Down Expand Up @@ -173,7 +173,7 @@ To install MMCV with pip instead of MIM, please follow [MMCV installation guides
For example, the following command install mmcv built for PyTorch 1.10.x and CUDA 11.3.

```shell
pip install 'mmcv>=2.0.0' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
pip install 'mmcv>=2.0.1' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
```

### Install on CPU-only platforms
Expand All @@ -192,7 +192,7 @@ thus we only need to install MMEngine, MMCV and MMPose with the following comman
```shell
!pip3 install openmim
!mim install mmengine
!mim install "mmcv>=2.0.0"
!mim install "mmcv>=2.0.1"
```

**Step 2.** Install MMPose from the source.
Expand All @@ -208,7 +208,7 @@ thus we only need to install MMEngine, MMCV and MMPose with the following comman
```python
import mmpose
print(mmpose.__version__)
# Example output: 1.0.0
# Example output: 1.1.0
```

```{note}
Expand Down
3 changes: 1 addition & 2 deletions docs/src/papers/datasets/animalkingdom.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,7 @@
<summary align="right"><a href="https://arxiv.org/abs/2204.08129">Animal Kingdom (CVPR'2022)</a></summary>

```bibtex
@InProceedings{
Ng_2022_CVPR,
@InProceedings{Ng_2022_CVPR,
author = {Ng, Xun Long and Ong, Kian Eng and Zheng, Qichen and Ni, Yun and Yeo, Si Yong and Liu, Jun},
title = {Animal Kingdom: A Large and Diverse Dataset for Animal Behavior Understanding},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
Expand Down
3 changes: 1 addition & 2 deletions docs/zh_cn/dataset_zoo/2d_animal_keypoint.md
Original file line number Diff line number Diff line change
Expand Up @@ -490,8 +490,7 @@ mmpose
</div>

```bibtex
@InProceedings{
Ng_2022_CVPR,
@inproceedings{Ng_2022_CVPR,
author = {Ng, Xun Long and Ong, Kian Eng and Zheng, Qichen and Ni, Yun and Yeo, Si Yong and Liu, Jun},
title = {Animal Kingdom: A Large and Diverse Dataset for Animal Behavior Understanding},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
Expand Down
1 change: 1 addition & 0 deletions docs/zh_cn/faq.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ Detailed compatible MMPose and MMCV versions are shown as below. Please choose t

| MMPose version | MMCV/MMEngine version |
| :------------: | :-----------------------------: |
| 1.1.0 | mmcv>=2.0.1, mmengine>=0.8.0 |
| 1.0.0 | mmcv>=2.0.0, mmengine>=0.7.0 |
| 1.0.0rc1 | mmcv>=2.0.0rc4, mmengine>=0.6.0 |
| 1.0.0rc0 | mmcv>=2.0.0rc0, mmengine>=0.0.1 |
Expand Down
14 changes: 7 additions & 7 deletions docs/zh_cn/installation.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@

在本节中,我们将演示如何准备 PyTorch 相关的依赖环境。

MMPose 适用于 Linux、Windows 和 macOS。它需要 Python 3.7+、CUDA 9.2+ 和 PyTorch 1.6+。
MMPose 适用于 Linux、Windows 和 macOS。它需要 Python 3.7+、CUDA 9.2+ 和 PyTorch 1.8+。

如果您对配置 PyTorch 环境已经很熟悉,并且已经完成了配置,可以直接进入下一节:[安装](#安装-mmpose)。否则,请依照以下步骤完成配置。

Expand Down Expand Up @@ -57,13 +57,13 @@ conda install pytorch torchvision cpuonly -c pytorch
```shell
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"
mim install "mmcv>=2.0.1"
```

请注意,MMPose 中的一些推理示例脚本需要使用 [MMDetection](https://github.com/open-mmlab/mmdetection) (mmdet) 检测人体。如果您想运行这些示例脚本,可以通过运行以下命令安装 mmdet:

```shell
mim install "mmdet>=3.0.0"
mim install "mmdet>=3.1.0"
```

## 最佳实践
Expand All @@ -88,7 +88,7 @@ pip install -v -e .
如果只是希望调用 MMPose 的接口,或者在自己的项目中导入 MMPose 中的模块。直接使用 mim 安装即可。

```shell
mim install "mmpose>=1.0.0"
mim install "mmpose>=1.1.0"
```

## 验证安装
Expand Down Expand Up @@ -180,7 +180,7 @@ MMCV 包含 C++ 和 CUDA 扩展,因此其对 PyTorch 的依赖比较复杂。M
举个例子,如下命令将会安装基于 PyTorch 1.10.x 和 CUDA 11.3 编译的 mmcv。

```shell
pip install 'mmcv>=2.0.0' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
pip install 'mmcv>=2.0.1' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
```

### 在 CPU 环境中安装
Expand All @@ -198,7 +198,7 @@ MMPose 可以仅在 CPU 环境中安装,在 CPU 模式下,您可以完成训
```shell
!pip3 install openmim
!mim install mmengine
!mim install "mmcv>=2.0.0"
!mim install "mmcv>=2.0.1"
```

**第 2 步** 从源码安装 mmpose
Expand All @@ -214,7 +214,7 @@ MMPose 可以仅在 CPU 环境中安装,在 CPU 模式下,您可以完成训
```python
import mmpose
print(mmpose.__version__)
# 预期输出: 1.0.0
# 预期输出: 1.1.0
```

```{note}
Expand Down
Loading

0 comments on commit 0855fca

Please sign in to comment.