Skip to content

Commit

Permalink
Support COCO-Wholebody (open-mmlab#133)
Browse files Browse the repository at this point in the history
  • Loading branch information
jin-s13 authored Sep 19, 2020
1 parent 4229e92 commit 0d2568d
Show file tree
Hide file tree
Showing 20 changed files with 9,646 additions and 14 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,7 @@ venv.bak/

# custom
mmpose/version.py
/models
/data
.vscode
.idea
Expand Down
8 changes: 8 additions & 0 deletions configs/top_down/darkpose/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,3 +24,11 @@
| [dark_pose_hrnet_w32](/configs/top_down/darkpose/coco/hrnet_w32_coco_384x288_dark.py) | 384x288 | 0.767 | 0.909 | 0.832 | 0.816 | 0.944 | [ckpt](https://openmmlab.oss-accelerate.aliyuncs.com/mmpose/top_down/hrnet/hrnet_w32_coco_384x288_dark-459422a4_20200812.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmpose/top_down/hrnet/hrnet_w32_coco_384x288_dark_20200812.log.json) |
| [dark_pose_hrnet_w48](/configs/top_down/darkpose/coco/hrnet_w48_coco_256x192_dark.py) | 256x192 | 0.764 | 0.907 | 0.830 | 0.814 | 0.943 | [ckpt](https://openmmlab.oss-accelerate.aliyuncs.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192_dark-8cba3197_20200812.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192_dark_20200812.log.json) |
| [dark_pose_hrnet_w48](/configs/top_down/darkpose/coco/hrnet_w48_coco_384x288_dark.py) | 384x288 | 0.773 | 0.910 | 0.833 | 0.820 | 0.946 | [ckpt](https://openmmlab.oss-accelerate.aliyuncs.com/mmpose/top_down/hrnet/hrnet_w48_coco_384x288_dark-741844ba_20200812.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmpose/top_down/hrnet/hrnet_w48_coco_384x288_dark_20200812.log.json) |

### Results on COCO-WholeBody val2017 with detector having human AP of 56.4 on COCO val2017 dataset

| Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
| :---- | :--------: | :-----: | :-----: | :-----: | :-----: | :-----: | :------: | :-----: | :-----: | :------: |:-------: |:------: | :------: |
| [dark_pose_hrnet_w48+](/configs/top_down/darkpose/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark.py) | 384x288 | 0.742 | 0.807 | 0.705 | 0.804 | 0.840 | 0.892 | 0.602 | 0.694 | 0.661 | 0.743 | [ckpt](https://openmmlab.oss-accelerate.aliyuncs.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192_20200708.log.json) |

Note: `+` means the model is first pre-trained on original COCO dataset, and then fine-tuned on COCO-WholeBody dataset. We find this will lead to better performance.
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
log_level = 'INFO'
load_from = None
resume_from = None
dist_params = dict(backend='nccl')
workflow = [('train', 1)]
checkpoint_config = dict(interval=10)
evaluation = dict(interval=10, metric='mAP', key_indicator='AP')

optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])

channel_cfg = dict(
num_output_channels=133,
dataset_joints=133,
dataset_channel=[
list(range(133)),
],
inference_channel=list(range(133)))

# model settings
model = dict(
type='TopDown',
pretrained='models/pytorch/imagenet/hrnet_w32-36af842e.pth',
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256))),
),
keypoint_head=dict(
type='TopDownSimpleHead',
in_channels=32,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process=True,
shift_heatmap=True,
unbiased_decoding=True,
modulate_kernel=11),
loss_pose=dict(type='JointsMSELoss', use_target_weight=True))

data_cfg = dict(
image_size=[192, 256],
heatmap_size=[48, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
bbox_thr=1.0,
use_gt_bbox=False,
image_thr=0.0,
bbox_file='data/coco/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2, unbiased_encoding=True),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]

val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=[
'img',
],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]

test_pipeline = val_pipeline

data_root = 'data/coco'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
train=dict(
type='TopDownCocoWholeBodyDataset',
ann_file=f'{data_root}/annotations/coco_wholebody_train_v1.0.json',
img_prefix=f'{data_root}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline),
val=dict(
type='TopDownCocoWholeBodyDataset',
ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline),
test=dict(
type='TopDownCocoWholeBodyDataset',
ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline),
)
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
log_level = 'INFO'
load_from = None
resume_from = None
dist_params = dict(backend='nccl')
workflow = [('train', 1)]
checkpoint_config = dict(interval=10)
evaluation = dict(interval=10, metric='mAP', key_indicator='AP')

optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])

channel_cfg = dict(
num_output_channels=133,
dataset_joints=133,
dataset_channel=[
list(range(133)),
],
inference_channel=list(range(133)))

# model settings
model = dict(
type='TopDown',
pretrained='models/pytorch/imagenet/hrnet_w32-36af842e.pth',
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256))),
),
keypoint_head=dict(
type='TopDownSimpleHead',
in_channels=32,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process=True,
shift_heatmap=True,
unbiased_decoding=True,
modulate_kernel=11),
loss_pose=dict(type='JointsMSELoss', use_target_weight=True))

data_cfg = dict(
image_size=[288, 384],
heatmap_size=[72, 96],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
bbox_thr=1.0,
use_gt_bbox=False,
image_thr=0.0,
bbox_file='data/coco/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=3, unbiased_encoding=True),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]

val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=[
'img',
],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]

test_pipeline = val_pipeline

data_root = 'data/coco'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
train=dict(
type='TopDownCocoWholeBodyDataset',
ann_file=f'{data_root}/annotations/coco_wholebody_train_v1.0.json',
img_prefix=f'{data_root}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline),
val=dict(
type='TopDownCocoWholeBodyDataset',
ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline),
test=dict(
type='TopDownCocoWholeBodyDataset',
ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline),
)
Loading

0 comments on commit 0d2568d

Please sign in to comment.