Skip to content

Commit

Permalink
[Docs] update readme (open-mmlab#2902)
Browse files Browse the repository at this point in the history
  • Loading branch information
Ben-Louis authored Jan 3, 2024
1 parent e2c1a1c commit 575f65a
Show file tree
Hide file tree
Showing 3 changed files with 31 additions and 20 deletions.
25 changes: 15 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -98,21 +98,26 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-

## What's New

- We have added support for two new datasets:
- Release [RTMO](/projects/rtmo), a state-of-the-art real-time method for multi-person pose estimation.

- (CVPR 2023) [UBody](https://mmpose.readthedocs.io/zh_CN/latest/model_zoo_papers/datasets.html#ubody-cvpr-2023)
- [300W-LP](https://github.com/open-mmlab/mmpose/tree/main/configs/face_2d_keypoint/topdown_heatmap/300wlp)
![rtmo](https://github.com/open-mmlab/mmpose/assets/26127467/54d5555a-23e5-4308-89d1-f0c82a6734c2)

- Support for four new algorithms:
- Release RTMW models in various sizes. This provides flexibility to select the right model for different speed and accuracy requirements.

- (ICCV 2023) [MotionBERT](https://github.com/open-mmlab/mmpose/tree/main/configs/body_3d_keypoint/motionbert)
- (ICCVW 2023) [DWPose](https://github.com/open-mmlab/mmpose/tree/main/configs/wholebody_2d_keypoint/dwpose)
- (ICLR 2023) [EDPose](https://mmpose.readthedocs.io/zh_CN/latest/model_zoo/body_2d_keypoint.html#edpose-edpose-on-coco)
- (ICLR 2022) [Uniformer](https://github.com/open-mmlab/mmpose/tree/main/projects/uniformer)
| Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt |
| :---------------------------------------------------------- | :--------: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :------: | :------: | :---------------------------------------------------------: |
| [rtmw-m](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw-m_8xb1024-270e_cocktail14-256x192.py) | 256x192 | 0.676 | 0.747 | 0.671 | 0.794 | 0.783 | 0.854 | 0.491 | 0.604 | 0.582 | 0.673 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmw/rtmw-dw-l-m_simcc-cocktail14_270e-256x192-20231122.pth) |
| [rtmw-l](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw-l_8xb1024-270e_cocktail14-256x192.py) | 256x192 | 0.743 | 0.807 | 0.763 | 0.868 | 0.834 | 0.889 | 0.598 | 0.701 | 0.660 | 0.746 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmw/rtmw-dw-x-l_simcc-cocktail14_270e-256x192-20231122.pth) |
| [rtmw-x](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw-x_8xb704-270e_cocktail14-256x192.py) | 256x192 | 0.746 | 0.808 | 0.770 | 0.869 | 0.844 | 0.896 | 0.610 | 0.710 | 0.672 | 0.752 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmw/rtmw-x_simcc-cocktail14_pt-ucoco_270e-256x192-13a2546d_20231208.pth) |
| [rtmw-l](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw-l_8xb320-270e_cocktail14-384x288.py) | 384x288 | 0.761 | 0.824 | 0.793 | 0.885 | 0.884 | 0.921 | 0.663 | 0.752 | 0.701 | 0.780 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmw/rtmw-dw-x-l_simcc-cocktail14_270e-384x288-20231122.pth) |
| [rtmw-x](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw-x_8xb320-270e_cocktail14-384x288.py) | 384x288 | 0.763 | 0.826 | 0.796 | 0.888 | 0.884 | 0.923 | 0.664 | 0.755 | 0.702 | 0.781 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmw/rtmw-x_simcc-cocktail14_pt-ucoco_270e-384x288-f840f204_20231122.pth) |

- Released the first whole-body pose estimation model, RTMW, with accuracy exceeding 70 AP on COCO-Wholebody. For details, refer to [RTMPose](/projects/rtmpose/). [Try it now!](https://openxlab.org.cn/apps/detail/mmpose/RTMPose)
- Support inference of [PoseAnything](/projects/pose_anything). Web demo is available [here](https://openxlab.org.cn/apps/detail/orhir/Pose-Anything).

![rtmw](https://github.com/open-mmlab/mmpose/assets/13503330/635c4618-c459-45e8-84a5-eb68cf338d00)
- Support for two new datasets:

- (CVPR 2023) [ExLPose](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#exlpose-dataset)
- (ICCV 2023) [H3WB](/docs/en/dataset_zoo/3d_wholebody_keypoint.md)

- Welcome to use the [*MMPose project*](/projects/README.md). Here, you can discover the latest features and algorithms in MMPose and quickly share your ideas and code implementations with the community. Adding new features to MMPose has become smoother:

Expand Down
25 changes: 15 additions & 10 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -96,21 +96,26 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-

## 最新进展

- 我们支持了两个新的数据集:
- 发布了单阶段实时多人姿态估计模型 [RTMO](/projects/rtmo)。相比 RTMPose 在多人场景下性能更优

![rtmo](https://github.com/open-mmlab/mmpose/assets/26127467/54d5555a-23e5-4308-89d1-f0c82a6734c2)

- (CVPR 2023) [UBody](https://mmpose.readthedocs.io/zh_CN/latest/model_zoo_papers/datasets.html#ubody-cvpr-2023)
- [300W-LP](https://github.com/open-mmlab/mmpose/tree/main/configs/face_2d_keypoint/topdown_heatmap/300wlp)
- 发布了不同尺寸的 RTMW 模型,满足不同的使用场景

- 支持四个新算法:
| Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt |
| :---------------------------------------------------------- | :--------: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :------: | :------: | :---------------------------------------------------------: |
| [rtmw-m](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw-m_8xb1024-270e_cocktail14-256x192.py) | 256x192 | 0.676 | 0.747 | 0.671 | 0.794 | 0.783 | 0.854 | 0.491 | 0.604 | 0.582 | 0.673 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmw/rtmw-dw-l-m_simcc-cocktail14_270e-256x192-20231122.pth) |
| [rtmw-l](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw-l_8xb1024-270e_cocktail14-256x192.py) | 256x192 | 0.743 | 0.807 | 0.763 | 0.868 | 0.834 | 0.889 | 0.598 | 0.701 | 0.660 | 0.746 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmw/rtmw-dw-x-l_simcc-cocktail14_270e-256x192-20231122.pth) |
| [rtmw-x](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw-x_8xb704-270e_cocktail14-256x192.py) | 256x192 | 0.746 | 0.808 | 0.770 | 0.869 | 0.844 | 0.896 | 0.610 | 0.710 | 0.672 | 0.752 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmw/rtmw-x_simcc-cocktail14_pt-ucoco_270e-256x192-13a2546d_20231208.pth) |
| [rtmw-l](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw-l_8xb320-270e_cocktail14-384x288.py) | 384x288 | 0.761 | 0.824 | 0.793 | 0.885 | 0.884 | 0.921 | 0.663 | 0.752 | 0.701 | 0.780 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmw/rtmw-dw-x-l_simcc-cocktail14_270e-384x288-20231122.pth) |
| [rtmw-x](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw-x_8xb320-270e_cocktail14-384x288.py) | 384x288 | 0.763 | 0.826 | 0.796 | 0.888 | 0.884 | 0.923 | 0.664 | 0.755 | 0.702 | 0.781 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmw/rtmw-x_simcc-cocktail14_pt-ucoco_270e-384x288-f840f204_20231122.pth) |

- (ICCV 2023) [MotionBERT](https://github.com/open-mmlab/mmpose/tree/main/configs/body_3d_keypoint/motionbert)
- (ICCVW 2023) [DWPose](https://github.com/open-mmlab/mmpose/tree/main/configs/wholebody_2d_keypoint/dwpose)
- (ICLR 2023) [EDPose](https://mmpose.readthedocs.io/zh_CN/latest/model_zoo/body_2d_keypoint.html#edpose-edpose-on-coco)
- (ICLR 2022) [Uniformer](https://github.com/open-mmlab/mmpose/tree/main/projects/uniformer)
- 支持了 [PoseAnything](/projects/pose_anything) 的推理。[在线试玩](https://openxlab.org.cn/apps/detail/orhir/Pose-Anything)

- 发布首个在 COCO-Wholebody 上精度超过 70 AP 的全身姿态估计模型 RTMW,具体请参考 [RTMPose](/projects/rtmpose/)[在线试玩](https://openxlab.org.cn/apps/detail/mmpose/RTMPose)
- 我们支持了两个新的数据集:

![rtmw](https://github.com/open-mmlab/mmpose/assets/13503330/635c4618-c459-45e8-84a5-eb68cf338d00)
- (CVPR 2023) [ExLPose](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#exlpose-dataset)
- (ICCV 2023) [H3WB](/docs/en/dataset_zoo/3d_wholebody_keypoint.md)

- 欢迎使用 [*MMPose 项目*](/projects/README.md)。在这里,您可以发现 MMPose 中的最新功能和算法,并且可以通过最快的方式与社区分享自己的创意和代码实现。向 MMPose 中添加新功能从此变得简单丝滑:

Expand Down
1 change: 1 addition & 0 deletions docs/en/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,7 @@ You can change the documentation language at the lower-left corner of the page.
dataset_zoo/2d_animal_keypoint.md
dataset_zoo/3d_body_keypoint.md
dataset_zoo/3d_hand_keypoint.md
dataset_zoo/3d_wholebody_keypoint.md

.. toctree::
:maxdepth: 1
Expand Down

0 comments on commit 575f65a

Please sign in to comment.