forked from open-mmlab/mmpose
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Refactor] Support CID (open-mmlab#1907)
- Loading branch information
Showing
25 changed files
with
2,089 additions
and
140 deletions.
There are no files selected for viewing
162 changes: 162 additions & 0 deletions
162
configs/body_2d_keypoint/cid/coco/cid_hrnet-w32_8xb20-140e_coco-512x512.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
_base_ = ['../../../_base_/default_runtime.py'] | ||
|
||
# runtime | ||
train_cfg = dict(max_epochs=140, val_interval=10) | ||
|
||
# optimizer | ||
optim_wrapper = dict(optimizer=dict( | ||
type='Adam', | ||
lr=1e-3, | ||
)) | ||
|
||
# learning policy | ||
param_scheduler = [ | ||
dict( | ||
type='MultiStepLR', | ||
begin=0, | ||
end=140, | ||
milestones=[90, 120], | ||
gamma=0.1, | ||
by_epoch=True) | ||
] | ||
|
||
# automatically scaling LR based on the actual training batch size | ||
auto_scale_lr = dict(base_batch_size=160) | ||
|
||
# hooks | ||
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater')) | ||
|
||
# codec settings | ||
codec = dict( | ||
type='DecoupledHeatmap', input_size=(512, 512), heatmap_size=(128, 128)) | ||
|
||
# model settings | ||
model = dict( | ||
type='BottomupPoseEstimator', | ||
data_preprocessor=dict( | ||
type='PoseDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True), | ||
backbone=dict( | ||
type='HRNet', | ||
in_channels=3, | ||
extra=dict( | ||
stage1=dict( | ||
num_modules=1, | ||
num_branches=1, | ||
block='BOTTLENECK', | ||
num_blocks=(4, ), | ||
num_channels=(64, )), | ||
stage2=dict( | ||
num_modules=1, | ||
num_branches=2, | ||
block='BASIC', | ||
num_blocks=(4, 4), | ||
num_channels=(32, 64)), | ||
stage3=dict( | ||
num_modules=4, | ||
num_branches=3, | ||
block='BASIC', | ||
num_blocks=(4, 4, 4), | ||
num_channels=(32, 64, 128)), | ||
stage4=dict( | ||
num_modules=3, | ||
num_branches=4, | ||
block='BASIC', | ||
num_blocks=(4, 4, 4, 4), | ||
num_channels=(32, 64, 128, 256), | ||
multiscale_output=True)), | ||
init_cfg=dict( | ||
type='Pretrained', | ||
checkpoint='https://download.openmmlab.com/mmpose/' | ||
'pretrain_models/hrnet_w32-36af842e.pth'), | ||
), | ||
head=dict( | ||
type='CIDHead', | ||
in_channels=(32, 64, 128, 256), | ||
num_keypoints=17, | ||
gfd_channels=32, | ||
input_transform='resize_concat', | ||
input_index=(0, 1, 2, 3), | ||
coupled_heatmap_loss=dict(type='FocalHeatmapLoss', loss_weight=1.0), | ||
decoupled_heatmap_loss=dict(type='FocalHeatmapLoss', loss_weight=4.0), | ||
contrastive_loss=dict( | ||
type='InfoNCELoss', temperature=0.05, loss_weight=1.0), | ||
decoder=codec, | ||
), | ||
train_cfg=dict(max_train_instances=200), | ||
test_cfg=dict( | ||
multiscale_test=False, | ||
flip_test=True, | ||
shift_heatmap=False, | ||
align_corners=False)) | ||
|
||
# base dataset settings | ||
dataset_type = 'CocoDataset' | ||
data_mode = 'bottomup' | ||
data_root = 'data/coco/' | ||
|
||
# pipelines | ||
train_pipeline = [ | ||
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}), | ||
dict(type='BottomupRandomAffine', input_size=codec['input_size']), | ||
dict(type='RandomFlip', direction='horizontal'), | ||
dict(type='GenerateTarget', encoder=codec), | ||
dict(type='BottomupGetHeatmapMask'), | ||
dict(type='PackPoseInputs'), | ||
] | ||
val_pipeline = [ | ||
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}), | ||
dict( | ||
type='BottomupResize', | ||
input_size=codec['input_size'], | ||
size_factor=64, | ||
resize_mode='expand'), | ||
dict( | ||
type='PackPoseInputs', | ||
meta_keys=('id', 'img_id', 'img_path', 'crowd_index', 'ori_shape', | ||
'img_shape', 'input_size', 'input_center', 'input_scale', | ||
'flip', 'flip_direction', 'flip_indices', 'raw_ann_info', | ||
'skeleton_links')) | ||
] | ||
|
||
# data loaders | ||
train_dataloader = dict( | ||
batch_size=20, | ||
num_workers=2, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='annotations/person_keypoints_train2017.json', | ||
data_prefix=dict(img='train2017/'), | ||
pipeline=train_pipeline, | ||
)) | ||
val_dataloader = dict( | ||
batch_size=1, | ||
num_workers=1, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='annotations/person_keypoints_val2017.json', | ||
data_prefix=dict(img='val2017/'), | ||
test_mode=True, | ||
pipeline=val_pipeline, | ||
)) | ||
test_dataloader = val_dataloader | ||
|
||
# evaluators | ||
val_evaluator = dict( | ||
type='CocoMetric', | ||
ann_file=data_root + 'annotations/person_keypoints_val2017.json', | ||
nms_thr=0.8, | ||
score_mode='keypoint', | ||
) | ||
test_evaluator = val_evaluator |
162 changes: 162 additions & 0 deletions
162
configs/body_2d_keypoint/cid/coco/cid_hrnet-w48_8xb20-140e_coco-512x512.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
_base_ = ['../../../_base_/default_runtime.py'] | ||
|
||
# runtime | ||
train_cfg = dict(max_epochs=140, val_interval=10) | ||
|
||
# optimizer | ||
optim_wrapper = dict(optimizer=dict( | ||
type='Adam', | ||
lr=1e-3, | ||
)) | ||
|
||
# learning policy | ||
param_scheduler = [ | ||
dict( | ||
type='MultiStepLR', | ||
begin=0, | ||
end=140, | ||
milestones=[90, 120], | ||
gamma=0.1, | ||
by_epoch=True) | ||
] | ||
|
||
# automatically scaling LR based on the actual training batch size | ||
auto_scale_lr = dict(base_batch_size=160) | ||
|
||
# hooks | ||
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater')) | ||
|
||
# codec settings | ||
codec = dict( | ||
type='DecoupledHeatmap', input_size=(512, 512), heatmap_size=(128, 128)) | ||
|
||
# model settings | ||
model = dict( | ||
type='BottomupPoseEstimator', | ||
data_preprocessor=dict( | ||
type='PoseDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True), | ||
backbone=dict( | ||
type='HRNet', | ||
in_channels=3, | ||
extra=dict( | ||
stage1=dict( | ||
num_modules=1, | ||
num_branches=1, | ||
block='BOTTLENECK', | ||
num_blocks=(4, ), | ||
num_channels=(64, )), | ||
stage2=dict( | ||
num_modules=1, | ||
num_branches=2, | ||
block='BASIC', | ||
num_blocks=(4, 4), | ||
num_channels=(48, 96)), | ||
stage3=dict( | ||
num_modules=4, | ||
num_branches=3, | ||
block='BASIC', | ||
num_blocks=(4, 4, 4), | ||
num_channels=(48, 96, 192)), | ||
stage4=dict( | ||
num_modules=3, | ||
num_branches=4, | ||
block='BASIC', | ||
num_blocks=(4, 4, 4, 4), | ||
num_channels=(48, 96, 192, 384), | ||
multiscale_output=True)), | ||
init_cfg=dict( | ||
type='Pretrained', | ||
checkpoint='https://download.openmmlab.com/mmpose/' | ||
'pretrain_models/hrnet_w48-8ef0771d.pth'), | ||
), | ||
head=dict( | ||
type='CIDHead', | ||
in_channels=(48, 96, 192, 384), | ||
num_keypoints=17, | ||
gfd_channels=48, | ||
input_transform='resize_concat', | ||
input_index=(0, 1, 2, 3), | ||
coupled_heatmap_loss=dict(type='FocalHeatmapLoss', loss_weight=1.0), | ||
decoupled_heatmap_loss=dict(type='FocalHeatmapLoss', loss_weight=4.0), | ||
contrastive_loss=dict( | ||
type='InfoNCELoss', temperature=0.05, loss_weight=1.0), | ||
decoder=codec, | ||
), | ||
train_cfg=dict(max_train_instances=200), | ||
test_cfg=dict( | ||
multiscale_test=False, | ||
flip_test=True, | ||
shift_heatmap=False, | ||
align_corners=False)) | ||
|
||
# base dataset settings | ||
dataset_type = 'CocoDataset' | ||
data_mode = 'bottomup' | ||
data_root = 'data/coco/' | ||
|
||
# pipelines | ||
train_pipeline = [ | ||
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}), | ||
dict(type='BottomupRandomAffine', input_size=codec['input_size']), | ||
dict(type='RandomFlip', direction='horizontal'), | ||
dict(type='GenerateTarget', encoder=codec), | ||
dict(type='BottomupGetHeatmapMask'), | ||
dict(type='PackPoseInputs'), | ||
] | ||
val_pipeline = [ | ||
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}), | ||
dict( | ||
type='BottomupResize', | ||
input_size=codec['input_size'], | ||
size_factor=64, | ||
resize_mode='expand'), | ||
dict( | ||
type='PackPoseInputs', | ||
meta_keys=('id', 'img_id', 'img_path', 'crowd_index', 'ori_shape', | ||
'img_shape', 'input_size', 'input_center', 'input_scale', | ||
'flip', 'flip_direction', 'flip_indices', 'raw_ann_info', | ||
'skeleton_links')) | ||
] | ||
|
||
# data loaders | ||
train_dataloader = dict( | ||
batch_size=20, | ||
num_workers=2, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='annotations/person_keypoints_train2017.json', | ||
data_prefix=dict(img='train2017/'), | ||
pipeline=train_pipeline, | ||
)) | ||
val_dataloader = dict( | ||
batch_size=1, | ||
num_workers=1, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='annotations/person_keypoints_val2017.json', | ||
data_prefix=dict(img='val2017/'), | ||
test_mode=True, | ||
pipeline=val_pipeline, | ||
)) | ||
test_dataloader = val_dataloader | ||
|
||
# evaluators | ||
val_evaluator = dict( | ||
type='CocoMetric', | ||
ann_file=data_root + 'annotations/person_keypoints_val2017.json', | ||
nms_thr=0.8, | ||
score_mode='keypoint', | ||
) | ||
test_evaluator = val_evaluator |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
<!-- [ALGORITHM] --> | ||
|
||
<details> | ||
<summary align="right"><a href="https://openaccess.thecvf.com/content/CVPR2022/html/Wang_Contextual_Instance_Decoupling_for_Robust_Multi-Person_Pose_Estimation_CVPR_2022_paper.html">CID (CVPR'2022)</a></summary> | ||
|
||
```bibtex | ||
@InProceedings{Wang_2022_CVPR, | ||
author = {Wang, Dongkai and Zhang, Shiliang}, | ||
title = {Contextual Instance Decoupling for Robust Multi-Person Pose Estimation}, | ||
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, | ||
month = {June}, | ||
year = {2022}, | ||
pages = {11060-11068} | ||
} | ||
``` | ||
|
||
</details> | ||
|
||
<!-- [DATASET] --> | ||
|
||
<details> | ||
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48">COCO (ECCV'2014)</a></summary> | ||
|
||
```bibtex | ||
@inproceedings{lin2014microsoft, | ||
title={Microsoft coco: Common objects in context}, | ||
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence}, | ||
booktitle={European conference on computer vision}, | ||
pages={740--755}, | ||
year={2014}, | ||
organization={Springer} | ||
} | ||
``` | ||
|
||
</details> | ||
|
||
Results on COCO val2017 without multi-scale test | ||
|
||
| Arch | Input Size | AP | AP<sup>50</sup> | AP<sup>75</sup> | AR | AR<sup>50</sup> | ckpt | log | | ||
| :-------------------------------------------- | :--------: | :---: | :-------------: | :-------------: | :---: | :-------------: | :-------------------------------------------: | :-------------------------------------------: | | ||
| [CID](/configs/body_2d_keypoint/cid/coco/cid_hrnet-w32_8xb20-140e_coco-512x512.py) | 512x512 | 0.704 | 0.894 | 0.775 | 0.753 | 0.928 | [ckpt](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/cid/coco/cid_hrnet-w32_8xb20-140e_coco-512x512_42b7e6e6-20230207.pth) | [log](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/cid/coco/cid_hrnet-w32_8xb20-140e_coco-512x512_20230207.json) | | ||
| [CID](/configs/body_2d_keypoint/cid/coco/cid_hrnet-w48_8xb20-140e_coco-512x512.py) | 512x512 | 0.715 | 0.900 | 0.782 | 0.765 | 0.935 | [ckpt](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/cid/coco/cid_hrnet-w48_8xb20-140e_coco-512x512_a36c3ecf-20230207.pth) | [log](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/cid/coco/cid_hrnet-w48_8xb20-140e_coco-512x512_20230207.json) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.