forked from xmu-xiaoma666/External-Attention-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3f5a792
commit eeba015
Showing
4 changed files
with
337 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,33 @@ | ||
from attention.BAM import BAMBlock | ||
from mlp.repmlp import RepMLP | ||
import torch | ||
from torch import nn | ||
|
||
input=torch.randn(50,512,7,7) | ||
bam = BAMBlock(channel=512,reduction=16,dia_val=2) | ||
output=bam(input) | ||
print(output.shape) | ||
N=4 #batch size | ||
C=512 #input dim | ||
O=1024 #output dim | ||
H=14 #image height | ||
W=14 #image width | ||
h=7 #patch height | ||
w=7 #patch width | ||
fc1_fc2_reduction=1 #reduction ratio | ||
fc3_groups=8 # groups | ||
repconv_kernels=[1,3,5,7] #kernel list | ||
repmlp=RepMLP(C,O,H,W,h,w,fc1_fc2_reduction,fc3_groups,repconv_kernels=repconv_kernels) | ||
x=torch.randn(N,C,H,W) | ||
repmlp.eval() | ||
for module in repmlp.modules(): | ||
if isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm1d): | ||
nn.init.uniform_(module.running_mean, 0, 0.1) | ||
nn.init.uniform_(module.running_var, 0, 0.1) | ||
nn.init.uniform_(module.weight, 0, 0.1) | ||
nn.init.uniform_(module.bias, 0, 0.1) | ||
|
||
#training result | ||
out=repmlp(x) | ||
|
||
|
||
#inference result | ||
repmlp.switch_to_deploy() | ||
deployout = repmlp(x) | ||
|
||
print(((deployout-out)**2).sum()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,232 @@ | ||
import torch | ||
from torch import nn | ||
from collections import OrderedDict | ||
from torch.nn import functional as F | ||
import numpy as np | ||
from numpy import random | ||
|
||
|
||
def setup_seed(seed): | ||
torch.manual_seed(seed) | ||
torch.cuda.manual_seed_all(seed) | ||
np.random.seed(seed) | ||
random.seed(seed) | ||
torch.backends.cudnn.deterministic = True | ||
|
||
class RepMLP(nn.Module): | ||
def __init__(self,C,O,H,W,h,w,fc1_fc2_reduction=1,fc3_groups=8,repconv_kernels=None,deploy=False): | ||
super().__init__() | ||
self.C=C | ||
self.O=O | ||
self.H=H | ||
self.W=W | ||
self.h=h | ||
self.w=w | ||
self.fc1_fc2_reduction=fc1_fc2_reduction | ||
self.repconv_kernels=repconv_kernels | ||
self.h_part=H//h | ||
self.w_part=W//w | ||
self.deploy=deploy | ||
self.fc3_groups=fc3_groups | ||
|
||
# make sure H,W can divided by h,w respectively | ||
assert H%h==0 | ||
assert W%w==0 | ||
|
||
self.is_global_perceptron= (H!=h) or (W!=w) | ||
### global perceptron | ||
if(self.is_global_perceptron): | ||
if(not self.deploy): | ||
self.avg=nn.Sequential(OrderedDict([ | ||
('avg',nn.AvgPool2d(kernel_size=(self.h,self.w))), | ||
('bn',nn.BatchNorm2d(num_features=C)) | ||
]) | ||
) | ||
else: | ||
self.avg=nn.AvgPool2d(kernel_size=(self.h,self.w)) | ||
hidden_dim=self.C//self.fc1_fc2_reduction | ||
self.fc1_fc2=nn.Sequential(OrderedDict([ | ||
('fc1',nn.Linear(C*self.h_part*self.w_part,hidden_dim)), | ||
('relu',nn.ReLU()), | ||
('fc2',nn.Linear(hidden_dim,C*self.h_part*self.w_part)) | ||
]) | ||
) | ||
|
||
self.fc3=nn.Conv2d(self.C*self.h*self.w,self.O*self.h*self.w,kernel_size=1,groups=fc3_groups,bias=self.deploy) | ||
self.fc3_bn=nn.Identity() if self.deploy else nn.BatchNorm2d(self.O*self.h*self.w) | ||
|
||
if not self.deploy and self.repconv_kernels is not None: | ||
for k in self.repconv_kernels: | ||
repconv=nn.Sequential(OrderedDict([ | ||
('conv',nn.Conv2d(self.C,self.O,kernel_size=k,padding=(k-1)//2, groups=fc3_groups,bias=False)), | ||
('bn',nn.BatchNorm2d(self.O)) | ||
]) | ||
|
||
) | ||
self.__setattr__('repconv{}'.format(k),repconv) | ||
|
||
|
||
def switch_to_deploy(self): | ||
self.deploy=True | ||
fc1_weight,fc1_bias,fc3_weight,fc3_bias=self.get_equivalent_fc1_fc3_params() | ||
#del conv | ||
if(self.repconv_kernels is not None): | ||
for k in self.repconv_kernels: | ||
self.__delattr__('repconv{}'.format(k)) | ||
#del fc3,bn | ||
self.__delattr__('fc3') | ||
self.__delattr__('fc3_bn') | ||
self.fc3 = nn.Conv2d(self.C * self.h * self.w, self.O * self.h * self.w, 1, 1, 0, bias=True, groups=self.fc3_groups) | ||
self.fc3_bn = nn.Identity() | ||
# Remove the BN after AVG | ||
if self.is_global_perceptron: | ||
self.__delattr__('avg') | ||
self.avg = nn.AvgPool2d(kernel_size=(self.h, self.w)) | ||
# Set values | ||
if fc1_weight is not None: | ||
self.fc1_fc2.fc1.weight.data = fc1_weight | ||
self.fc1_fc2.fc1.bias.data = fc1_bias | ||
self.fc3.weight.data = fc3_weight | ||
self.fc3.bias.data = fc3_bias | ||
|
||
|
||
|
||
|
||
def get_equivalent_fc1_fc3_params(self): | ||
#training fc3+bn weight | ||
fc_weight,fc_bias=self._fuse_bn(self.fc3,self.fc3_bn) | ||
#training conv weight | ||
if(self.repconv_kernels is not None): | ||
max_kernel=max(self.repconv_kernels) | ||
max_branch=self.__getattr__('repconv{}'.format(max_kernel)) | ||
conv_weight,conv_bias=self._fuse_bn(max_branch.conv,max_branch.bn) | ||
for k in self.repconv_kernels: | ||
if(k!=max_kernel): | ||
tmp_branch=self.__getattr__('repconv{}'.format(k)) | ||
tmp_weight,tmp_bias=self._fuse_bn(tmp_branch.conv,tmp_branch.bn) | ||
tmp_weight=F.pad(tmp_weight,[(max_kernel-k)//2]*4) | ||
conv_weight+=tmp_weight | ||
conv_bias+=tmp_bias | ||
repconv_weight,repconv_bias=self._conv_to_fc(conv_weight,conv_bias) | ||
final_fc3_weight=fc_weight+repconv_weight.reshape_as(fc_weight) | ||
final_fc3_bias=fc_bias+repconv_bias | ||
else: | ||
final_fc3_weight=fc_weight | ||
final_fc3_bias=fc_bias | ||
|
||
#fc1 | ||
if(self.is_global_perceptron): | ||
#remove BN after avg | ||
avgbn = self.avg.bn | ||
std = (avgbn.running_var + avgbn.eps).sqrt() | ||
scale = avgbn.weight / std | ||
avgbias = avgbn.bias - avgbn.running_mean * scale | ||
fc1 = self.fc1_fc2.fc1 | ||
replicate_times = fc1.in_features // len(avgbias) | ||
replicated_avgbias = avgbias.repeat_interleave(replicate_times).view(-1, 1) | ||
bias_diff = fc1.weight.matmul(replicated_avgbias).squeeze() | ||
final_fc1_bias = fc1.bias + bias_diff | ||
final_fc1_weight = fc1.weight * scale.repeat_interleave(replicate_times).view(1, -1) | ||
|
||
else: | ||
final_fc1_weight=None | ||
final_fc1_bias=None | ||
|
||
return final_fc1_weight,final_fc1_bias,final_fc3_weight,final_fc3_bias | ||
|
||
|
||
|
||
|
||
# def _conv_to_fc(self,weight,bias): | ||
# i_maxtrix=torch.eye(self.C*self.h*self.w//self.fc3_groups).repeat(1,self.fc3_groups).reshape(self.C*self.h*self.w//self.fc3_groups,self.C,self.h,self.w) | ||
# fc_weight=F.conv2d(i_maxtrix,weight=weight,bias=bias,padding=weight.shape[2]//2,groups=self.fc3_groups) | ||
# fc_weight=fc_weight.reshape(self.C*self.h*self.w//self.fc3_groups,-1) | ||
# fc_bias = bias.repeat_interleave(self.h * self.w) | ||
# return fc_weight,fc_bias | ||
|
||
|
||
def _conv_to_fc(self,conv_kernel, conv_bias): | ||
I = torch.eye(self.C * self.h * self.w // self.fc3_groups).repeat(1, self.fc3_groups).reshape(self.C * self.h * self.w // self.fc3_groups, self.C, self.h, self.w).to(conv_kernel.device) | ||
fc_k = F.conv2d(I, conv_kernel, padding=conv_kernel.size(2)//2, groups=self.fc3_groups) | ||
fc_k = fc_k.reshape(self.C * self.h * self.w // self.fc3_groups, self.O * self.h * self.w).t() | ||
fc_bias = conv_bias.repeat_interleave(self.h * self.w) | ||
return fc_k, fc_bias | ||
|
||
|
||
def _fuse_bn(self, conv_or_fc, bn): | ||
std = (bn.running_var + bn.eps).sqrt() | ||
t = bn.weight / std | ||
if conv_or_fc.weight.ndim == 4: | ||
t = t.reshape(-1, 1, 1, 1) | ||
else: | ||
t = t.reshape(-1, 1) | ||
return conv_or_fc.weight * t, bn.bias - bn.running_mean * bn.weight / std | ||
|
||
|
||
def forward(self,x) : | ||
### global partition | ||
if(self.is_global_perceptron): | ||
input=x | ||
v=self.avg(x) #bs,C,h_part,w_part | ||
v=v.reshape(-1,self.C*self.h_part*self.w_part) #bs,C*h_part*w_part | ||
v=self.fc1_fc2(v) #bs,C*h_part*w_part | ||
v=v.reshape(-1,self.C,self.h_part,1,self.w_part,1) #bs,C,h_part,w_part | ||
input=input.reshape(-1,self.C,self.h_part,self.h,self.w_part,self.w) #bs,C,h_part,h,w_part,w | ||
input=v+input | ||
else: | ||
input=x.view(-1,self.C,self.h_part,self.h,self.w_part,self.w) #bs,C,h_part,h,w_part,w | ||
partition=input.permute(0,2,4,1,3,5) #bs,h_part,w_part,C,h,w | ||
|
||
### partition partition | ||
fc3_out=partition.reshape(-1,self.C*self.h*self.w,1,1) #bs*h_part*w_part,C*h*w,1,1 | ||
fc3_out=self.fc3_bn(self.fc3(fc3_out)) #bs*h_part*w_part,O*h*w,1,1 | ||
fc3_out=fc3_out.reshape(-1,self.h_part,self.w_part,self.O,self.h,self.w) #bs,h_part,w_part,O,h,w | ||
|
||
### local perceptron | ||
if(self.repconv_kernels is not None and not self.deploy): | ||
conv_input=partition.reshape(-1,self.C,self.h,self.w) #bs*h_part*w_part,C,h,w | ||
conv_out=0 | ||
for k in self.repconv_kernels: | ||
repconv=self.__getattr__('repconv{}'.format(k)) | ||
conv_out+=repconv(conv_input) ##bs*h_part*w_part,O,h,w | ||
conv_out=conv_out.view(-1,self.h_part,self.w_part,self.O,self.h,self.w) #bs,h_part,w_part,O,h,w | ||
fc3_out+=conv_out | ||
fc3_out=fc3_out.permute(0,3,1,4,2,5)#bs,O,h_part,h,w_part,w | ||
fc3_out=fc3_out.reshape(-1,self.C,self.H,self.W) #bs,O,H,W | ||
|
||
|
||
return fc3_out | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
setup_seed(20) | ||
N=4 #batch size | ||
C=512 #input dim | ||
O=1024 #output dim | ||
H=14 #image height | ||
W=14 #image width | ||
h=7 #patch height | ||
w=7 #patch width | ||
fc1_fc2_reduction=1 #reduction ratio | ||
fc3_groups=8 # groups | ||
repconv_kernels=[1,3,5,7] #kernel list | ||
repmlp=RepMLP(C,O,H,W,h,w,fc1_fc2_reduction,fc3_groups,repconv_kernels=repconv_kernels) | ||
x=torch.randn(N,C,H,W) | ||
repmlp.eval() | ||
for module in repmlp.modules(): | ||
if isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm1d): | ||
nn.init.uniform_(module.running_mean, 0, 0.1) | ||
nn.init.uniform_(module.running_var, 0, 0.1) | ||
nn.init.uniform_(module.weight, 0, 0.1) | ||
nn.init.uniform_(module.bias, 0, 0.1) | ||
|
||
#training result | ||
out=repmlp(x) | ||
|
||
|
||
#inference result | ||
repmlp.switch_to_deploy() | ||
deployout = repmlp(x) | ||
|
||
print(((deployout-out)**2).sum()) |