Skip to content

mstrimas/auklet

Repository files navigation

auklet: Analysis and visualization of your eBird sightings

auklet provides tools for analyzing and visualizing your personal eBird data. Your personal sightings can be downloaded as a CSV file from the Download My Data page on the eBird website.

Installation

Install auklet from GitHub using:

# install.packages("devtools")
devtools::install_github("mstrimas/auklet")

Usage

All functions in auklet begin with eb_ (for eBird) to aid tab completion. Import your eBird sightings data into a data frame with eb_sightings():

library(auklet)
library(dplyr)
# load example data inclued with the package
ebird_data <- system.file("extdata/MyEBirdData.csv", package = "auklet") %>%
  eb_sightings()

Once your eBird data are imported, you can begin summarizing and visualizing them. The most basic functionality is generating your life list.

eb_lifelist(ebird_data) %>% 
  select(species_common, date, country) %>% 
  head()
#> # A tibble: 6 x 3
#>                 species_common       date country
#>                          <chr>     <date>   <chr>
#> 1   White-faced Whistling-Duck 2014-06-03      CO
#> 2 Black-bellied Whistling-Duck 2014-05-27      CO
#> 3  Greater White-fronted Goose 2011-02-20      US
#> 4                   Snow Goose 2011-02-20      US
#> 5                 Ross's Goose 2011-02-20      US
#> 6                        Brant 2011-02-21      US

Life lists can, of course, be viewed directly on the eBird website; however, other functions produce summaries or visualizations not available in eBird. For example, use eb_lifelist_day() to creat daily life lists, i.e. a data frame of species seen on each day of the year.

day_lists <- eb_lifelist_day(ebird_data)
# species seen on feb 14
filter(day_lists, month == 2, day == 14) %>% 
  select(month, day, species_common)
#> # A tibble: 10 x 3
#>    month   day           species_common
#>    <dbl> <int>                    <chr>
#>  1     2    14            Brown Pelican
#>  2     2    14        California Condor
#>  3     2    14     California Scrub-Jay
#>  4     2    14 Double-crested Cormorant
#>  5     2    14         Great Blue Heron
#>  6     2    14              Great Egret
#>  7     2    14          Red-tailed Hawk
#>  8     2    14           Turkey Vulture
#>  9     2    14         Western Bluebird
#> 10     2    14     White-throated Swift

These day lists can be summarized to daily counts with summary() or visualized with plot().

summary(day_lists) %>% 
  head()
#> # A tibble: 6 x 3
#>   month   day     n
#>   <dbl> <int> <int>
#> 1     1     1    23
#> 2     1     2    33
#> 3     1     3     6
#> 4     1     4    12
#> 5     1     6    30
#> 6     1     7     1
plot(day_lists)

Acknowledgments

This package, and some of the specific functionality, was inspired by conversations with Drew Weber, Taylor Long, and Tom Auer.

About

Analysis and Visualization of Your eBird Data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages