mashumaro is a fast and well tested serialization framework on top of dataclasses.
When using dataclasses, you often need to dump and load objects according to the described scheme. This framework not only adds this ability to serialize in different formats, but also makes serialization rapidly.
- Installation
- Supported serialization formats
- Supported field types
- Usage example
- How does it work?
- API
Use pip to install:
$ pip install mashumaro
This framework adds methods for dumping to and loading from the following formats:
- plain dict
- json
- yaml
- msgpack
Plain dict can be useful when you need to pass a dict object to a third-party library, such as a client for MongoDB.
There is support for generic types from the standard typing module:
- List
- Tuple
- Set
- FrozenSet
- Deque
- Dict
- Mapping
- MutableMapping
- ChainMap
- Sequence
for special primitives from the typing module:
- Optional
- Any
for enumerations based on classes from the standard enum module:
- Enum
- IntEnum
- Flag
- IntFlag
for common built-in types:
- int
- float
- bool
- str
- bytes
- bytearray
for built-in datetime oriented types:
- datetime
- date
- time
- timedelta
for other less popular built-in types:
- uuid.UUID
for other specific types like NoneType and for nested dataclasses itself.
from enum import Enum
from typing import Set
from dataclasses import dataclass
from mashumaro import DataClassJSONMixin
class PetType(Enum):
CAT = 'CAT'
MOUSE = 'MOUSE'
@dataclass
class Pet(DataClassJSONMixin):
name: str
age: int
pet_type: PetType
@dataclass
class Person(DataClassJSONMixin):
first_name: str
second_name: str
age: int
pets: Set[Pet]
tom = Pet(name='Tom', age=5, pet_type=PetType.CAT)
jerry = Pet(name='Jerry', age=3, pet_type=PetType.MOUSE)
john = Person(first_name='John', second_name='Smith', age=18, pets={tom, jerry})
dump = john.to_json()
person = Person.from_json(dump)
# person == john
Pet.from_json('{"name": "Tom", "age": 5, "pet_type": "CAT"}')
# Pet(name='Tom', age=5, pet_type=<PetType.CAT: 'CAT'>)
This framework works by taking the schema of the data and generating a specific parser and builder for exactly that schema. This is much faster than inspection of field types on every call of parsing or building at runtime.
Mashumaro provides a couple of mixins for each format.
Make a JSON formatted string from dataclass object based on the dataclass schema provided.
Make a new object from JSON formatted string based on the dataclass schema provided.
Make a MessagePack formatted bytes object from dataclass object based on the dataclass schema provided.
Make a new object from MessagePack formatted data based on the dataclass schema provided.
Make an YAML formatted bytes object from dataclass object based on the dataclass schema provided.
Make a new object from YAML formatted data based on the dataclass schema provided.
Make a dictionary from dataclass object based on the dataclass schema provided. Options include:
use_bytes: False # False - convert bytes/bytearray objects to base64 encoded string, True - keep untouched
use_enum: False # False - convert enum objects to enum values, True - keep untouched
use_datetime: False # False - convert datetime oriented objects to ISO 8601 formatted string, True - keep untouched
Make a new object from dict object based on the dataclass schema provided. Options include:
use_bytes: False # False - load bytes/bytearray objects from base64 encoded string, True - keep untouched
use_enum: False # False - load enum objects from enum values, True - keep untouched
use_datetime: False # False - load datetime oriented objects from ISO 8601 formatted string, True - keep untouched
- write benchmarks
- add parameters to json serialization methods
- add optional validation
- add Union support (try to match types on each call)
- write custom useful types such as URL, Email etc
- write documentation