ML-friendly datasets for major Galaxy Zoo citizen science campaigns.
- PyTorch Datasets and PyTorch Lightning DataModules
- TensorFlow tf.data.Dataset's
- Framework-independent (i.e. TensorFlow-friendly) download and augmentation code
Name | Method | PyTorch Dataset | Published | Downloadable | Galaxies |
---|---|---|---|---|---|
Galaxy Zoo 2 | gz2 | GZ2 | ☑ | ☑ | ~210k (main sample) |
GZ UKIDSS | gz_ukidss | GZUKIDSS | ☒ | ☑ | ~71k |
GZ Hubble* | gz_hubble | GZHubble | ☑ | ☑ | ~106k (main sample) |
GZ CANDELS | gz_candels | GZCandels | ☑ | ☑ | ~50k |
GZ DECaLS GZD-5 | gz_decals_5 | GZDecals5 | ☑ | ☑ | ~230k (GZD-5 only) |
GZ Rings | gz_rings | GZRings | ☒ | ☑ | ~93k |
GZ DESI | gz_desi | GZDesi | ☑ | No* (500GB) | 8.7M |
GZ H2O (deep HSC) | gz_h2o | GZH2O | ☒ | ☑ | ~48k |
GZ JWST (CEERS) | gz_JWST | GZJWST | ☒ | ☑ | ~7k |
CFHT Tidal* | tidal | Tidal | ☑ | ☑ | 1760 (expert) |
Any datasets marked as downloadable but not marked as published are only downloadable internally (for development purposes).
For each dataset, you must cite/acknowledge the GZ data release paper and the original telescope survey from which the images were derived. See data.galaxyzoo.org for the data release paper citations to use.
We also include small debugging datasets:
Name | Method | PyTorch Dataset | Downloadable | Galaxies |
---|---|---|---|---|
Demo Rings (binary) | demo_rings | DemoRings | ☑ | 1000 |
Galaxy MNIST (four-class) | galaxy_mnist | GalaxyMNIST | ☑ | 10k |
Galaxy MNIST is also available as a pure torchvision dataset (exactly like MNIST).
*GZ Hubble is also available in "euclidised" form (i.e. with the Euclid PSF applied) to Euclid collaboration members. The method is gz_hubble_euclidised
. Courtesy of Ben Aussel.
**Mike Smith has shared a replication of the GZ DESI images and labels on HuggingFace (983GB)
**CFHT Tidal is not a Galaxy Zoo dataset, but rather a small expert-labelled dataset of tidal features from Atkinson 2013. MW reproduced and modified the images in Walmsley 2019. We include it here as a challenging fine-grained morphology classification task with little labelled data.
Installing zoobot will automatically install this package as a dependency.
To install directly:
pip install galaxy-datasets[pytorch]
for PyTorch dependenciespip install galaxy-datasets[tensorflow]
for TensorFlow dependenciespip install galaxy-datasets[pytorch,tensorflow]
for both
For local development (e.g. adding a new dataset), you can install this by cloning from github, then running pip install -e .
in the cloned repo root. This makes changing the code easier than if you don't use the -e, in which case the package is installed under sitepackages.
I suggest either:
- For basic use without changes, installing
zoobot
via pip and allowing pip to manage this dependency - For development, installing both
zoobot
andgalaxy-datasets
via git
Check out the PyTorch quickstart Colab here, or keep reading for more explanation.
To download a dataset:
from galaxy_datasets import gz2 # or gz_hubble, gz_candels, ...
catalog, label_cols = gz2(
root='your_data_folder/gz2',
train=True,
download=True
)
This will download the images and train/test catalogs to root
. Each catalog
is a pandas DataFrame with the column file_loc
giving absolute image paths and additional columns label_cols = ['col_a', 'col_b', ...]
giving the labels (usually, the number of volunteers who gave each answer for each galaxy). If train=True
, the method returns the train catalog, otherwise, the test catalog.
If training Zoobot from scratch, this is all you need. For example, in PyTorch:
from zoobot.pytorch.training import train_with_pytorch_lightning
train_with_pytorch_lightning.train_default_zoobot_from_scratch(
catalog=catalog,
save_dir=save_dir,
schema=gz2_schema, # see zoobot/pytorch/examples/minimal_example.py
...
)
Otherwise, you might like to use the classes in this package to load these catalogs into ML-friendly inputs.
Create a PyTorch Dataset from a catalog like so:
from galaxy_datasets.pytorch.galaxy_dataset import GalaxyDataset # generic Dataset for galaxies
dataset = GalaxyDataset(
catalog=catalog.sample(1000), # from gz2(...) above
label_cols=['smooth-or-featured-gz2_smooth'],
transform=optional_transforms_if_you_like
)
Notice how you can adjust the catalog before creating the Dataset. This gives flexibility to try training on e.g. different catalog subsets.
If you don't want to change anything about the catalog, you can skip the framework-independent download and use a named class from galaxy_datasets.pytorch
, which takes the same arguments and directly gives a Dataset:
from galaxy_datasets.pytorch import GZ2
gz2_dataset = GZ2(
root='your_data_folder/gz2',
train=True,
download=False
)
image, label = gz2_dataset[0]
plt.imshow(image)
You might also find the PyTorch Lightning DataModule under galaxy_datasets/pytorch/galaxy_datamodule
useful. Zoobot uses this for training and finetuning.
from galaxy_datasets.pytorch.galaxy_datamodule import GalaxyDataModule
datamodule = GalaxyDataModule(
label_cols=['smooth-or-featured-gz2_smooth'],
catalog=catalog
# optional args to specify augmentations
)
datamodule.prepare_data()
datamodule.setup()
for images, labels in datamodule.train_dataloader():
print(images.shape, labels.shape)
break
To create a tf.data.Dataset from a catalog:
import tensorflow as tf
from galaxy_datasets.tensorflow.datasets import get_image_dataset, add_transforms_to_dataset
from galaxy_datasets.transforms import default_transforms # same transforms as PyTorch
train_dataset = get_image_dataset(
image_paths = catalog['file_loc'],
labels=catalog[label_cols].values,
requested_img_size=224
)
# specify augmentations
transforms = default_transforms()
# apply augmentations
train_dataset = add_transforms_to_dataset(train_dataset, transforms)
# batch, shuffle, prefetch for performance
train_dataset = train_dataset.shuffle(5000).batch(64).prefetch(tf.data.experimental.AUTOTUNE)
for images, labels in train_dataset.take(1):
print(images.shape, labels.shape)
break
Datasets are downloaded like:
- {root}
- images
- subfolder (except GZ2)
- image.jpg
- subfolder (except GZ2)
- {catalog_name(s)}.parquet
- images
The whole dataset is downloaded regardless of whether train=True
or train=False
.