forked from tensorflow/probability
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Internal Change: Add highly experimental numpy backend.
PiperOrigin-RevId: 242215103
- Loading branch information
1 parent
8cd775d
commit a192249
Showing
15 changed files
with
1,759 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
# Copyright 2018 The TensorFlow Probability Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
# Description: | ||
# Various backend alternatives to TF. | ||
|
||
licenses(["notice"]) # Apache 2.0 | ||
|
||
package( | ||
default_visibility = [ | ||
"//tensorflow_probability:__subpackages__", | ||
], | ||
) | ||
|
||
exports_files(["LICENSE"]) | ||
|
||
py_library( | ||
name = "numpy", | ||
srcs = ["__init__.py"], | ||
deps = [ | ||
"//tensorflow_probability/python/internal/backend/numpy", | ||
], | ||
) |
14 changes: 14 additions & 0 deletions
14
tensorflow_probability/python/internal/backend/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# Copyright 2018 The TensorFlow Probability Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ |
121 changes: 121 additions & 0 deletions
121
tensorflow_probability/python/internal/backend/numpy/BUILD
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
# Copyright 2018 The TensorFlow Probability Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
# Description: | ||
# Numpy backend. | ||
|
||
licenses(["notice"]) # Apache 2.0 | ||
|
||
package( | ||
default_visibility = [ | ||
"//tensorflow_probability:__subpackages__", | ||
], | ||
) | ||
|
||
exports_files(["LICENSE"]) | ||
|
||
py_library( | ||
name = "numpy", | ||
srcs = ["__init__.py"], | ||
deps = [ | ||
":array", | ||
":control_flow", | ||
":dtype", | ||
":linalg", | ||
":math", | ||
":misc", | ||
":ops", | ||
":test", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "array", | ||
srcs = ["array.py"], | ||
deps = [ | ||
# numpy dep, | ||
# tensorflow dep, | ||
"//tensorflow_probability/python/internal/backend/numpy/internal:utils", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "control_flow", | ||
srcs = ["control_flow.py"], | ||
deps = [ | ||
# tensorflow dep, | ||
"//tensorflow_probability/python/internal/backend/numpy/internal:utils", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "dtype", | ||
srcs = ["dtype.py"], | ||
deps = [ | ||
# numpy dep, | ||
# tensorflow dep, | ||
"//tensorflow_probability/python/internal/backend/numpy/internal:utils", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "linalg", | ||
srcs = ["linalg.py"], | ||
deps = [ | ||
# numpy dep, | ||
# scipy dep, | ||
# tensorflow dep, | ||
"//tensorflow_probability/python/internal/backend/numpy/internal:utils", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "math", | ||
srcs = ["math.py"], | ||
deps = [ | ||
# numpy dep, | ||
# scipy dep, | ||
# tensorflow dep, | ||
"//tensorflow_probability/python/internal/backend/numpy/internal:utils", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "misc", | ||
srcs = ["misc.py"], | ||
deps = [ | ||
# numpy dep, | ||
# tensorflow dep, | ||
"//tensorflow_probability/python/internal/backend/numpy/internal:utils", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "ops", | ||
srcs = ["ops.py"], | ||
deps = [ | ||
# numpy dep, | ||
# tensorflow dep, | ||
"//tensorflow_probability/python/internal/backend/numpy/internal:utils", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "test", | ||
srcs = ["test.py"], | ||
deps = [ | ||
# tensorflow dep, | ||
"//tensorflow_probability/python/internal/backend/numpy/internal:utils", | ||
], | ||
) |
31 changes: 31 additions & 0 deletions
31
tensorflow_probability/python/internal/backend/numpy/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
# Copyright 2018 The TensorFlow Probability Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
"""Experimental Numpy backend.""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
from tensorflow_probability.python.internal.backend.numpy import linalg | ||
from tensorflow_probability.python.internal.backend.numpy import math | ||
from tensorflow_probability.python.internal.backend.numpy import test | ||
from tensorflow_probability.python.internal.backend.numpy.array import * # pylint: disable=wildcard-import | ||
from tensorflow_probability.python.internal.backend.numpy.control_flow import * # pylint: disable=wildcard-import | ||
from tensorflow_probability.python.internal.backend.numpy.dtype import * # pylint: disable=wildcard-import | ||
from tensorflow_probability.python.internal.backend.numpy.math import * # pylint: disable=wildcard-import | ||
from tensorflow_probability.python.internal.backend.numpy.misc import * # pylint: disable=wildcard-import | ||
from tensorflow_probability.python.internal.backend.numpy.ops import * # pylint: disable=wildcard-import | ||
|
||
matmul = linalg.matmul |
194 changes: 194 additions & 0 deletions
194
tensorflow_probability/python/internal/backend/numpy/array.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
# Copyright 2018 The TensorFlow Probability Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
"""Numpy implementations of TensorFlow general top-level functions.""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
# Dependency imports | ||
import numpy as np | ||
|
||
import tensorflow as tf | ||
|
||
from tensorflow_probability.python.internal.backend.numpy.internal import utils | ||
|
||
|
||
__all__ = [ | ||
'concat', | ||
'expand_dims', | ||
'fill', | ||
'linspace', | ||
'ones', | ||
'ones_like', | ||
'range', | ||
'rank', | ||
'reshape', | ||
'reverse', | ||
'roll', | ||
'shape', | ||
'size', | ||
'split', | ||
'squeeze', | ||
'stack', | ||
'tile', | ||
'transpose', | ||
'where', | ||
'zeros', | ||
'zeros_like', | ||
# 'boolean_mask', | ||
# 'einsum', | ||
# 'foldl', | ||
# 'foldr', | ||
# 'gather', | ||
# 'gather_nd', | ||
# 'one_hot', | ||
# 'pad', | ||
# 'tensordot', | ||
# 'unstack', | ||
] | ||
|
||
|
||
def _eye(num_rows, num_columns=None, batch_shape=None, | ||
dtype=tf.float32, name=None): # pylint: disable=unused-argument | ||
dt = utils.numpy_dtype(dtype) | ||
x = np.eye(num_rows, num_columns).astype(dt) | ||
if batch_shape is not None: | ||
x *= np.ones(np.concatenate([batch_shape, [1, 1]], axis=0)).astype(dt) | ||
return x | ||
|
||
|
||
def _ones_like(input, dtype=None, name=None): # pylint: disable=redefined-builtin | ||
s = _shape(input) | ||
if isinstance(s, (np.ndarray, np.generic)): | ||
return np.ones(s, utils.numpy_dtype(dtype or input.dtype)) | ||
return tf.ones(s, dtype or s.dtype, name) | ||
|
||
|
||
def _shape(input, out_type=tf.int32, name=None): # pylint: disable=redefined-builtin,unused-argument | ||
return np.array(np.array(input).shape).astype(utils.numpy_dtype(out_type)) | ||
|
||
|
||
def _size(input, out_type=tf.int32, name=None): # pylint: disable=redefined-builtin, unused-argument | ||
return np.prod(np.array(input).shape).astype(utils.numpy_dtype(out_type)) | ||
|
||
|
||
def _transpose(a, perm=None, conjugate=False, name='transpose'): # pylint: disable=unused-argument | ||
x = np.transpose(a, perm) | ||
return np.conjugate(x) if conjugate else x | ||
|
||
|
||
def _zeros_like(input, dtype=None, name=None): # pylint: disable=redefined-builtin | ||
s = _shape(input) | ||
if isinstance(s, (np.ndarray, np.generic)): | ||
return np.zeros(s, utils.numpy_dtype(dtype or input.dtype)) | ||
return tf.zeros(s, dtype or s.dtype, name) | ||
|
||
|
||
# --- Begin Public Functions -------------------------------------------------- | ||
|
||
|
||
concat = utils.copy_docstring( | ||
tf.concat, | ||
lambda values, axis, name=None: np.concatenate(values, axis)) | ||
|
||
eye = utils.copy_docstring( | ||
tf.eye, | ||
_eye) | ||
|
||
expand_dims = utils.copy_docstring( | ||
tf.expand_dims, | ||
lambda input, axis, name=None: np.expand_dims(input, axis)) | ||
|
||
fill = utils.copy_docstring( | ||
tf.fill, | ||
lambda dims, value, name=None: value * np.ones(dims, np.array(value).dtype)) | ||
|
||
reverse = utils.copy_docstring( | ||
tf.reverse, | ||
lambda tensor, axis, name=None: np.flip(tensor, axis)) | ||
|
||
linspace = utils.copy_docstring( | ||
tf.linspace, | ||
lambda start, stop, num, name=None: ( # pylint: disable=g-long-lambda | ||
np.linspace(start, stop, num).astype(np.array(start).dtype))) | ||
|
||
ones = utils.copy_docstring( | ||
tf.ones, | ||
lambda shape, dtype=tf.float32, name=None: np.ones( # pylint: disable=g-long-lambda | ||
shape, utils.numpy_dtype(dtype))) | ||
|
||
ones_like = utils.copy_docstring( | ||
tf.ones_like, | ||
_ones_like) | ||
|
||
range = utils.copy_docstring( # pylint: disable=redefined-builtin | ||
tf.range, | ||
lambda start, limit=None, delta=1, dtype=None, name='range': ( # pylint: disable=g-long-lambda | ||
np.arange(start, limit, delta, utils.numpy_dtype(dtype)))) | ||
|
||
rank = utils.copy_docstring( | ||
tf.rank, | ||
lambda input, name=None: len(np.array(input).shape)) # pylint: disable=redefined-builtin,g-long-lambda | ||
|
||
reshape = utils.copy_docstring( | ||
tf.reshape, | ||
lambda tensor, shape, name=None: np.reshape(tensor, shape)) | ||
|
||
roll = utils.copy_docstring( | ||
tf.roll, | ||
lambda input, shift, axis: np.roll(input, shift, axis)) # pylint: disable=unnecessary-lambda | ||
|
||
shape = utils.copy_docstring( | ||
tf.shape, | ||
_shape) | ||
|
||
size = utils.copy_docstring( | ||
tf.size, | ||
_size) | ||
|
||
split = utils.copy_docstring( | ||
tf.split, | ||
lambda value, num_or_size_splits, axis=0, num=None, name='split': ( # pylint: disable=g-long-lambda | ||
np.split(value, num_or_size_splits, axis))) | ||
|
||
squeeze = utils.copy_docstring( | ||
tf.squeeze, | ||
lambda input, axis=None, name=None: np.squeeze(input, axis)) | ||
|
||
stack = utils.copy_docstring( | ||
tf.stack, | ||
lambda values, axis, name=None: np.stack(values, axis)) | ||
|
||
tile = utils.copy_docstring( | ||
tf.tile, | ||
lambda input, multiples, name=None: np.tile(input, multiples)) | ||
|
||
transpose = utils.copy_docstring( | ||
tf.transpose, | ||
_transpose) | ||
|
||
where = utils.copy_docstring( | ||
tf.where, | ||
lambda condition, x, y, name=None: np.where(condition, x, y)) | ||
|
||
zeros = utils.copy_docstring( | ||
tf.zeros, | ||
lambda shape, dtype=tf.float32, name=None: np.zeros( # pylint: disable=g-long-lambda | ||
shape, utils.numpy_dtype(dtype))) | ||
|
||
zeros_like = utils.copy_docstring( | ||
tf.zeros_like, | ||
_zeros_like) |
Oops, something went wrong.