Skip to content

Commit

Permalink
change document structure
Browse files Browse the repository at this point in the history
  • Loading branch information
mtjhl committed Oct 14, 2022
1 parent 61f12fe commit aaa61af
Showing 1 changed file with 21 additions and 25 deletions.
46 changes: 21 additions & 25 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
<img src="assets/banner-YOLO.png" align="middle" width = "1000" />
</p>


English | [简体中文](README_cn.md)

## YOLOv6

Expand Down Expand Up @@ -47,6 +47,9 @@ YOLOv6-N hits 35.9% AP on COCO dataset with 1234 FPS on T4. YOLOv6-S strikes 43.

- Speed is tested with TensorRT 8.4 on T4.
- Precision is figured on models for 300 epochs.
- Results of the mAP and speed are evaluated on [COCO val2017](https://cocodataset.org/#download) dataset with the input resolution of 640×640.
- Refer to [Test speed](./docs/Test_speed.md) tutorial to reproduce the speed results of YOLOv6.
- Params and FLOPs of YOLOv6 are estimated on deployed models.

<details>
<summary>Legacy models</summary>
Expand All @@ -60,12 +63,6 @@ YOLOv6-N hits 35.9% AP on COCO dataset with 1234 FPS on T4. YOLOv6-S strikes 43.

</details>

- Results of the mAP and speed are evaluated on [COCO val2017](https://cocodataset.org/#download) dataset with the input resolution of 640×640.
- Refer to [Test speed](./docs/Test_speed.md) tutorial to reproduce the speed results of YOLOv6.
- Params and FLOPs of YOLOv6 are estimated on deployed models.




## Quick Start

Expand Down Expand Up @@ -97,6 +94,23 @@ Multi GPUs (DDP mode recommended)
```shell
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --device 0,1,2,3,4,5,6,7
```
- conf: select config file to specify network/optimizer/hyperparameters. Pretrained model path is recommended to be specified in the config file with the `pretrained` parameter if training on your custom dataset.
- data: prepare [COCO](http://cocodataset.org) dataset, [YOLO format coco labels](https://github.com/meituan/YOLOv6/releases/download/0.1.0/coco2017labels.zip) and specify dataset paths in data.yaml
- make sure your dataset structure as follows:
```
├── coco
│ ├── annotations
│ │ ├── instances_train2017.json
│ │ └── instances_val2017.json
│ ├── images
│ │ ├── train2017
│ │ └── val2017
│ ├── labels
│ │ ├── train2017
│ │ ├── val2017
│ ├── LICENSE
│ ├── README.txt
```



Expand Down Expand Up @@ -167,24 +181,6 @@ Your can also specify a checkpoint path to `--resume` parameter by
```

</details>

- conf: select config file to specify network/optimizer/hyperparameters. Pretrained model path is recommended to be specified in the config file with the `pretrained` parameter if training on your custom dataset.
- data: prepare [COCO](http://cocodataset.org) dataset, [YOLO format coco labels](https://github.com/meituan/YOLOv6/releases/download/0.1.0/coco2017labels.zip) and specify dataset paths in data.yaml
- make sure your dataset structure as follows:
```
├── coco
│ ├── annotations
│ │ ├── instances_train2017.json
│ │ └── instances_val2017.json
│ ├── images
│ │ ├── train2017
│ │ └── val2017
│ ├── labels
│ │ ├── train2017
│ │ ├── val2017
│ ├── LICENSE
│ ├── README.txt
```
</details>

<details>
Expand Down

0 comments on commit aaa61af

Please sign in to comment.